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Abstract—We describe the class of translation invariant measures on the algebra B(H) of bounded
linear operators on a Hilbert space H and some of its subalgebras. In order to achieve this we apply
two steps. First we show that a total minimal system of finite weights on the operator algebra defines
a family of rectangles in this algebra through construction of operator intervals. The second step is
construction of a translation invariant measure on some subalgebras of algebra B(H) by the family
of rectangles. The operator intervals in the Jordan algebra B(H)sa is investigated. We also obtain
some new operator inequalities.
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1. INTRODUCTION

According to the A. Weil theorem (see [1]), there does not exist a Lebesgue measure on an infinite-
dimensional Banach space X . So it is impossible to build a non-zero σ-additive σ-finite locally
finite shift-invariant measure defined on all Borel subsets of an infinite-dimensional Banach space X .
Therefore we turn to the following definition of a translation invariant measure on Banach space. An
additive function λ on some ring R of subsets of Banach space X is called a translation invariant measure
on the space X if for any set A ∈ R and any vector a ∈ X ) the conditions A+ a ∈ R, λ(A+ a) = λ(A)
hold.

Let A be a C∗-algebra of bounded linear operators acting on a Hilbert space H. The translation
invariant measure on the algebra A is constructed by the following scheme. At the first step we choose
a family of the finite weights on algebra A and construct the corresponding family of operator intervals
in algebra A (see [2, 3]). Hence the family of measurable rectangles in algebra A is defined by the family
of the operator intervals. According to the approach of work [4] the additive function of a set is defined
on the family of measurable rectangles by means of the product of the operator intervals lengths of the
measurable rectangle. At the second step we extend the family of measurable rectangles onto the ring of
measurable subsets of the algebra A applying constructions of [4]. It is shown that an additive function of
a set on the family of measurable rectangles is uniquely extendable to the translation invariant measure λ
on the ring of measurable sets of algebra A. We study the properties of countable additivity, σ-finiteness,
local finiteness of the constructed measure λ. Moreover, the invariance of this measure with respect to
some transformations of algebra A is considered (in particular, with respect to unitary equivalence, see
Remark 3.3). In Chapter 4 we investigate the operator intervals in the Jordan algebra B(H)sa and obtain
some new operator inequalities.

*E-mail: Airat.Bikchentaev@kpfu.ru
**E-mail: fumi2003@mail.ru

1039



1040 BIKCHENTAEV, SAKBAEV

2. NOTATION AND DEFINITIONS

A complex Banach ∗-algebra A such that ||x∗x|| = ||x||2 for all x ∈ A is called a C∗-algebra. An
element x ∈ A is called a projection, if x = x2 = x∗. The symbols Asa and A+ denote the subsets of
Hermitian and positive elements of C∗-algebra A, respectively.

Let H be a separable Hilbert space. Let B(H) be an algebra of all bounded linear operators on
the space H. Any C∗-algebra can be realized as the C∗-subalgebra of B(H) for some Hilbert space
H (Gelfand–Naimark; see [5], Theorem 3.4.1). Let B(H)sa be a Jordan algebra of all bounded self-
adjoint operators on the space H. Let |T| =

√
T∗T ∈ B(H)+ for any T ∈ B(H). If T ∈ B(H)sa

then the operators T+ = (|T|+T)/2 and T− = (|T| −T)/2 belong to the set B(H)+ and meet the
equalities T = T+ −T− and T+T− = θ. Let I be the identity operator in the space H. For any
operator X ∈ B(H)+ define the following two sets: IX = {Y ∈ B(H)sa : −X ≤ Y ≤ X} and MX =
{Y ∈ B(H) : |Y| ≤ X}.

An additive homogeneous map ω : A+ → [0,+∞) is called a finite weight on a C∗-algebra A. A
system of finite weights {ωa, a ∈ Ω} on an algebra A is called complete if an operator A ∈ A subject to
the conditions ωa(A) = 0∀a ∈ Ω, must be the zero operator: A = θ.

A complete system of finite weights {ωa, a ∈ Ω} is called minimal, if for any proper subset Ω1 ⊂ Ω
the system {ωa, a ∈ Ω1} is not complete on an algebra A.

A system of finite weights {ωa, a ∈ Ω} on an operator algebra A is called independent if for any
element a ∈ Ω A contains the operator A such that ωa(A) 
= 0 and ωb(A) = 0 ∀b ∈ Ω\{a}. For
example, if a finite weight ω1 is faithful (see [6]) then the one-element system {ω1} is a complete minimal
independent system of weights on the algebra B(H).

Let {ek} be a countable system of unit vectors which is dense in the unit sphere of the space H. If
ωek(A) = (Aek, ek)H then the system of finite weights {ωek , k ∈ N} is complete on the algebra B(H)
but is not a minimal system.

Let {ek} be an orthonormal basis in the space H. Then the system {ωek} is not complete on the
algebra B(H) since there exist the nontrivial operators A ∈ B(H) such that (ek,Aek) = 0 ∀k ∈ N. But
the system {ωek} is complete and minimal on the commutative subalgebra A of operators sharing the
common orthonormal basis of eigenvectors {ek}.

3. TRANSLATION INVARIANT MEASURES

Lemma 3.1. Any finite independent system of finite weights Σ = {ω1, . . . , ωm} on a Jordan
algebra B(H)sa defines the translation invariant measure on the algebra B(H)sa.

Proof. In fact, the system Σ defines the continuous surjective map ΦΣ : B(H)sa → R
m. Let λm be

the Lebesgue measure on the Euclidean space R
m. Let μΣ be the preimage of the measure λm of the

map ΦΣ: μΣ(AΠ) = λm(Π) for any Π ∈ B(Rm) where AΠ = Φ−1
Σ (Π).

The preimage of the disjoint sets Δ1 and Δ2 of the σ-ring K(Rm) of bounded Borel sets consists of
the disjoint sets Φ−1

Σ (Δ) and Φ−1
Σ (Δ2). The preimage of the σ-ring K(Rm) of the map ΦΣ is the σ-ring

RΣ = Φ−1
Σ (K(Rm)) of subsets of the space B(H)sa. The σ-additivity of the function μΣ on the σ-ring

of sets Φ−1
Σ (K(Rm)) is the consequence of the σ-additivity of the function λm on the σ-ring of bounded

Borel sets K(Rm). �

Example 3.2. Let A be the Jordan ring of the self-adjoint trace-class operators. Let ω the trace on
the space of trace-class operators. Let Rω be a σ-ring of subsets Φ−1

ω (K(R)). Then the function Iω :
Rω → R such that Iω({X ∈ A : ω(X) ∈ [a, b)}) = b− a ∀a, b : −∞ < a < b < +∞ is a translation
invariant countable additive measure on the Jordan ring A defined on the σ-ring of subsets Rω .

We say that a family of subsets S of the set X splits points of the set X if (X, τS) is the Hausdorff
topological space, where τS is the topology on the set X generated by the family S.

Lemma 3.1 and Example 3.2 describe the class of translation invariant countable additive measures
on the spaces of operators acting in a Hilbert space H. Any measure of this class is generated by a
Lebesgue measure on a finite dimensional Euclidean space. But any measure of this class is not invariant
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with respect to a unitary mapping of the space H. Moreover, for any m ∈ N the σ-ring R−1
Σ (K(Rm))

does not split points of Jordan algebra B(H)sa since the mapping ΦΣ has the nontrivial kernel.

Remark 3.3. If a countable system of finite weights Σ on a C∗-algebra A is complete then the
topology on the algebra A generated by the family Σ is a Hausdorff topology.

Lemma 3.4. Let A be a C∗-algebra of bounded linear operators acting on a Hilbert space H. A
countable system of finite weights Σ on the C∗-algebra A is complete if and only if the mapping
ΦΣ : A → �∞ is injective. Here the mapping ΦΣ is defined by the equality ΦΣ(A) = {ωk(A},A ∈
A.

In fact, if a system of finite weights Σ is complete (is not complete) on the C∗-algebra A, then the
mapping ΦΣ : A → �∞ has the trivial (respectively, nontrivial) kernel. �

Let Σ be a complete system of finite weights on a C∗-algebra of operators A. We investigate the
existence of a translation invariant measure defined on the ring of subsets of a C∗-algebra A generated
by the system of weights Σ. Moreover, we study measures on the C∗-algebra A invariant with respect to
the unitary equivalence transformations. The unitary equivalence transformations are parametrized by
the groupU(H) of unitary operators in the space H by the ruleA → U−1AU, A ∈ A, where U ∈ U(H).

Let {ek} be an orthonormal basis in the space H. Let Q{ek} ≡ {Pk, k ∈ N} be a countable systems
of the orthogonal projections onto one-dimensional subspaces spanned by the vectors of this basis. Let
Σ(Q{ek}) = {ωek , k ∈ N} be a system of weights on the algebra B(H) defined by the relation

ωek(A) = Tr(APk) = (ek,Aek)H,A ∈ B(H), k ∈ N. (1)

The symbol P denotes the set of all the one-dimensional orthogonal projection systems on the space
H each element of which is generated by an orthonormal basis. Any system of projections Q ∈ P defines
the system of weights Σ(Q) according to equality (1).

Example 3.5. Let A2 be a commutative ring of Hilbert–Schmidt self-adjoint operators. This ring
is the linear space endowed with the Hilbert–Schmidt norm and is isomorphic to the Hilbert space
�2. Therefore the Hilbert space A2 possesses the orthonormal basis consisting of one-dimensional
orthogonal projections Pk, k ∈ N in the ring A2. Let {Ik(a, b), k ∈ N, −∞ < a ≤ b < +∞} be a system
of operator intervals on the ring A2 such that Ik(a, b) = {A ∈ A2 : aPk ≤ A ≤ bPk}. If a, b ∈ �∞ then

the set Πa,b =
∞⋂

k=1

Ik(ak, bk) is called an operator rectangle in the ring of operators A2. Let R be a

minimal ring defined by the family of rectangles {Πa,b, a, b ∈ �∞}.

Remark 3.6. The ring of subsets R of the operator ring A2 splits points of the set A2.

Theorem 3.7. Let A2 be a commutative ring of self-adjoint Hilbert–Schmidt operators on the
space H. Then we have the translation invariant locally finite σ-finite completely finite additive
measure μ on the ring of operators A2 such that the measure μ is defined on the ring of subsets

R and the values of measure μ on any nonempty operator rectangle
∞⋂

k=1

Ik(ak, bk) are equal to the

product
∞∏

k=1

(bk − ak) of the lengthes of the operator segments.

Proof. Let us consider the ring of operators A2 as the Hilbert space endowed with the scalar
product (A,B)A2 = Tr(A∗B),A,B ∈ A2. Then we have the orthonormal basis of one-dimensional
projections Pk, k ∈ N in this Hilbert space. Let {Ik(a, b), k ∈ N, −∞ < a ≤ b < +∞} be the system
of operator intervals in the ring of operators A2 such that Ik(a, b) = {A ∈ A : aPk ≤ A ≤ bPk}. The
system of one-dimensional orthogonal projections Q = {Pk, k ∈ N} defines the system of weightsΣ(Q)
according to equality (1). Since the system Σ(Q) is complete and minimal the mapping ΦΣ(Q) : A →
�∞: ΦΣ(Q)(A) = {ak} is injective for all A ∈ A (where ak = Tr(APk), k ∈ N). Moreover, the mapping
ΦΣ(Q) is an isometric isomorphism of the ring A2 with the Hilbert–Schmidt norm onto the space �2.

Let us apply the construction of shift invariant measures on the space �2 described in [4, 7]. A set Π ⊂
�2 is called rectangle if there exist two elements a, b ∈ �∞ such that Π = {x ∈ �2 : xj ∈ [aj , bj), j ∈ N}.
In this case the rectangle Π is denoted by Πa,b.
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The rectangle Πa,b is called absolutely measurable if either Πa,b = ∅, or the following condition holds
∞∑

j=1
max{ln(bj − aj), 0} < +∞. The function λ0 : K → [0,+∞) is defined on the family K of absolutely

measurable rectangles of the space �2 by the following conditions: λ0(Πa,b) = exp(
∞∑

j=1
ln(bj − aj)) for

any nonempty absolutely measurable rectangle and λ0(∅) = 0. Then the set function λ0 is additive and
translation invariant on the collection of sets K (see [8], Lemma 1). The set function λ0 : K → [0,+∞)
admits the unique extension onto the translation and rotation invariant finite additive complete measure
λ on the space �2 such that the measure λ is defined on the minimal ring Λ containing the family of
absolutely measurable rectangles K and its image under the actions of the group of orthogonal mappings
of the space �2 (see [4], Corollary 4). The measure λ is not countable additive (see [4], Theorem 1).
The measure λ is σ-finite since the space �2 has the covering by the countable system of rectangles
{Πm,N ,m,N ∈ N} such that λ(Πm,N ) = 0 ∀m,N ∈ N. Here for any m,N ∈ N the rectangle Πm,N has
the edges [ak, bk) = [−N,N) ∀k = 1, . . . ,m, and [ak, bk) = [−1

3 ,
1
3 ) ∀k > m.

Let μQ = λ ◦Φ−1
Σ(Q) be the preimage of measure λ under the mappingΦΣ(Q). The preimage Φ−1

Σ(Q)(Λ)

of the ring Λ of the subsets of the space �2 is the ring RQ of the subsets of the ring A2 of operators such
that μQ(B) = λ(ΦΣ(Q)(B)) for any B ∈ RQ. The measure μQ meets properties of the measure λ. �

Remark 3.8. Let U(H) be a group of unitary operators on the space H. The measure μQ is invariant
with respect to the subgroup UA2(H) of transformations TU,U ∈ U(H) of the ring A2 by unitary oper-
ators such that A2 = {U−1AU,A ∈ A2}. Here TU(A) = U−1AU,A ∈ A2 for any unitary operator
U ∈ U(H). Invariantnes of the measure μQ means that the equality μQ(B) = μQ(U

−1BU) holds for
any set B ∈ RQ and any U ∈ UA2(H). This properties are the consequence of the rotation invariance
of the measure λ. In particular, the measure μQ is invariant with respect to the rearrangements of
the system Q elements. Thus the measure μΣ(Q) = λ ◦ Φ−1

Σ(Q) is a finite additive translation invariant
complete σ-finite and locally finite measure on the operator ring A2 and this measure does not depend
on the choice of a basis of one-dimensional orthogonal projections {Pk}.

Remark 3.9. There exist infinitely many different translation invariant locally finite σ-finite complete
finite additive measures on the operator ring A2. Firstly, a bijection A2 → �2 can be defined applying
different complete minimal systems of weights. Secondly, the choice of a translation invariant measure
on the space �2 with the other properties listed above is not unique (see [4, 7, 8]).

Theorem 3.10. Let B(H)sa be a Jordan algebra of bounded self-adjoint operators on the space
H. Then any countable system of finite weights Σ = {ωk} ∈ P on the algebra B(H)sa defines the
translation invariant complete finite additive measure on the algebra B(H)sa.

Proof. In fact, since we have Σ ∈ P, the system Σ is an independent system of weights on the
algebra B(H)sa. Therefore it defines the surjective linear mapping ΦΣ : B(H)sa → �∞, acting by the rule
ΦΣ(A) = {ak} ∀A ∈ B(H)sa, where ak = ωk(A), k ∈ N. If N = Ker(ΦΣ) and B(H)sa

0 = B(H)sa/N
then the mapping ΦΣ : B(H)sa

0 → �∞ is a bijection. Now we apply the construction of a shift-invariant
measure on the Banach space �∞ given in papers [4, 7, 9]. A rectangle in the space �∞ is defined
as the set of type Πa,b, a, b ∈ �∞ : aj ≤ bj∀j ∈ N} defined by the conditions Πa,b = {x ∈ �∞ : xj ∈

[aj , bj), j ∈ N}. The rectangle is called absolutely measurable if
∞∑

j=1
max{ln(bj − aj), 0} < +∞. The

set function λ0 : K → [0,+∞) is defined by the equalities λ0(Πa,b) = exp(
∞∑

j=1
ln(bj − aj)) on the family

of absolutely measurable rectangles K in the space �∞. The set function λ0 is translation invariant and
additive on the family of setsK. It admits the extension to the translation invariant finite additive measure
λ on the space �∞ such that the measure λ is defined on the minimal ring Λ containing the family of a
sets K (see [4, 7, 9]).

The preimage Φ−1
Σ (Λ) of the ring Λ of subsets of the space �∞ is the ring RΣ of subsets of the algebra

B(H)sa. Let μΣ(B) = λ(ΦΣ(B)) for any B ∈ RΣ. Therefore μΣ = λ ◦Φ−1
Σ is the image of the measure

λ under the mapping ΦΣ. The measure μΣ inherits certain properties of the measure λ, e.g. translation
invariance and completeness. �
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4. ON OPERATOR INTERVALS

Next, we study operator intervals in the Jordan algebra B(H)sa. It is motivated by consideration
of the image of the Stieltjes transform over all operator-valued measures generating a given sequence
of Stieltjes–Hermite moments (see [10]). Operator intervals naturally appear in the noncommutative
integration theory (see [11–13]).

Theorem 4.1. For every operator B ∈ B(H)+ we have IB ⊃ MB ∩B(H)sa. There exists a matrix
B ∈ M(C)+2 such that IB 
= MB ∩M(C)sa

2 .
Proof. For A ∈ MB ∩ B(H)sa we have A ≤ |A| ≤ B and −A ≤ |A| ≤ B, therefore −B ≤ A ≤ B,

i. e. A ∈ IB. Assume that IB = MB ∩M(C)sa
2 for all B ∈ M(C)+2 . Since −|X| ≤ X ≤ |X| and −|Y| ≤

Y ≤ |Y| for all X,Y ∈ M(C)sa
2 , we have −|X| − |Y| ≤ X+Y ≤ |X|+ |Y|. By the assumption we

obtain the inequality |X+Y| ≤ |X|+ |Y| for all X,Y ∈ M(C)sa
2 , but it does not hold for

X =

⎛

⎝
−1 0

0 0

⎞

⎠ and Y = 2−1

⎛

⎝
1 1

1 1

⎞

⎠ ,

see [14]. Theorem is proved. �

Proposition 4.2. Consider operators X ∈ B(H)+ and Y ∈ IX. Then ||Y|| ≤ ||X|| and if Y is
invertible then X is also invertible.

Proof. By [15, Theorem 1] there exists a unitary operator U ∈ B(H)sa such that |Y| ≤ (X+
UXU)/2. Invertibility of X for invertible Y was established in [16, Corollary 2]. �

Proposition 4.3. Consider operators X,Y ∈ B(H)+ and a = max{||X||, ||Y||}. Then X−Y ∈
IX+Y and X−Y ∈ I2aI−X−Y .

Proof. We have −(X+Y) ≤ X−Y ≤ X+Y, X ≤ aI, and Y ≤ aI. Then

X+Y − 2aI ≤ X−Y = (aI−Y)− (aI −X) ≤ (aI−Y) + (aI −X).

�

Proposition 4.4. Consider operators X,Y ∈ B(H). We have
(i) X∗Y +Y∗X ∈ IX∗X+Y∗Y;
(ii) XY +Y∗X∗ ∈ IX|Y∗|2X∗+I;

(iii) if X ∈ B(H)+ then XY∗ +YX ∈ IX+YXY∗ ;
(iv) if X ∈ B(H)+ and Y ∈ B(H)sa then Y ∈ I|Y−X|+X.

Proof. (i) Since (X±Y)∗(X±Y) ≥ θ, the relation

−(X∗X+Y∗Y) ≤ X∗Y +Y∗X ≤ X∗X+Y∗Y

holds.
(ii) We have (XY ± I)(XY ± I)∗ ≥ θ.

(iii) We have (
√
X±Y

√
X)(

√
X±Y

√
X)∗ ≥ θ.

(iv) We have Y ≤ |Y−X|+X and, since X ≥ θ, we obtain −|Y−X| −X ≤ −|Y−X|+X ≤ Y.
�

There exists B ∈ M(C)+2 such that MB is not convex [2, Theorem 3].
Proposition 4.5. If an operator B ∈ B(H)+ is a projection then the set MB is convex.

Proof. Consider operators X,Y ∈ MB . Then |X|2 ≤ |X| and |Y|2 ≤ |Y|. We obtain

|λX+ (1− λ)Y| =
√

λ2X∗X+ (1− λ)2Y∗Y + λ(1 − λ)(X∗Y +Y∗X)

≤
√

λX∗X+ (1− λ)Y∗Y ≤
√

λB+ (1− λ)B = B

for an arbitrary number λ ∈ [0, 1] by operator monotonocity of the function f(t) =
√
t on R

+ and by
inequality (X±Y)∗(X±Y) ≥ 0. �

Remark 4.6. For X ∈ B(H)+ the set IX is convex. We have I+X = IX ∩ B(H)+ = {Y ∈ B(H)sa :

θ ≤ Y ≤ X} and the shift X+ IX = I+2X. Denote by P the orthogonal projection onto the subspace
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Ran
√
2X. We have T ∈ ExtI+2X if and only if T =

√
2XQ

√
2X, where Q is a projection from I+P , see [17,

Theorem]. Since the set of extreme points of an arbitrary convex set with affine mapping goes into a set
of extreme points of the image, we have

ExtIX = −X+ ExtI+2X.

The set ExtIX is compact in the weak operator topology (that is, in the w-topology), since it is w-closed
and lies in the ball of radius ||X|| centered at θ [18, Proposition 2.4.2]. By the Krein–Milman theorem,
IX coincides with the w-closure of a convex hull sets of its extreme points.

The operator X ∈ B(H)+ is compact if and only if IX is || · ||-compact, and if these conditions are
met, IX coincides with || · ||-closure of a convex hull sets of its extreme points [2].
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