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PART 1
CONTINUOUS WAVE NUCLEAR MAGNETIC RESONANCE IN SOLIDS

Introduction

The purpose of the given work is introduction to basics of a nuclear magnetic
resonance (NMR) theory in diamagnetic dielectric crystals and with the experimental
principles of nuclear magnetic resonance signals detection by continuous wave (CW)
methods. This small handbook does not allow to cover with necessary depth even the
basic aspects of CW nuclear magnetic resonance. Therefore the handbook can be
viewed only as the elementary introduction into NMR, and the consistent and
coherent treatment of the theory and experiment can be found in the following
monographies:

1. A. Abragam, The principles of nuclear magnetism. Oxford: Clarendon Press, 1961.
2. C.P. Slichter, Principles of magnetic resonance — Springer-Verlag, Berlin, 1980.

3. A. Losche, Kerninduktion, Deutscher Verlag der Wissenschaften, Berlin, 1957.

4. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids,
Oxford University Press, 1970.

1. Basics of NMR theory in solids

1.1. Motion of free spins.

The concept of “free spins” implies that the magnetic moment of nucleus or
atom does not experience interaction with other atoms of substance, and, strictly
speaking, is applicable only to very dilute gases. In solids the atoms are bound with
each other by forces of electrostatic and magnetic interaction; however the approach
of free spins appears useful here for determination of motion behavior of the
elementary magnetic moments affected by static and variable magnetic fields.

The nuclear angular momentum G is expressed via the dimensionless spin
vector | and has the form

G =nl,



where h=h/27z — Planck constant. The value of nuclear spin I is the greatest possible

value of component I in some direction (for example, set by external magnetic field).

The nuclear spin is not identical with spin vector length, but is related with it via the

equation |I]=/1 (1 +1).
The nuclear magnetic dipole moment p is parallel or antiparallel to a vector of
angular momentum G, therefore we can write
p=yG=yhl.
The quantity y, called the gyromagnetic ratio, is positive if the magnetic moment is

parallel to spin moment and is negative otherwise. The nuclear magnetic moments are

measured in units of nuclear magneton:
uy =0.505-107% erg/Gs
(compare with Bohr magneton u, =0.927-107%° erg/Gs).
The magnetic dipole p placed in magnetic field H is affected by the moment of
force [pH]. This moment of force causes the change with time of vector of angular

momentum G so we can write
—=[pH]| wm dd—?:j/[GH]. (1)

According to the solution of this equation, the vectors G and u precess around a field
H direction with angular velocity o, =—-yH. How would this motion seem to the
observer if he/she is in a coordinate system which rotates around an axis coinciding

with direction of vector H (rotating frame, RF) ? If such coordinate system rotates

relative the laboratory coordinate system (laboratory frame, LF) with angular velocity

o, then the derivative dG/dt, calculated in LF, and the analogous derivative
DG/Dt calculated in RF, are related by the equation

dG/dt = DG/Dt +[@G].
Combining this equation with the previous one, we obtain the equation of motion for

moment G in RF

DG/Dt=y[G(H+wo/y)] (2)



This equation looks like the initial one, but differs from it, more explicitly, that
instead of H we have now H+w/y. Thus the motion of vectors G and p in a
rotating coordinate system is also a precession, but with angular velocity
o'=—yH=-y(H+o/y)=0,-o. (3)
As one would expect, this apparent precession velocity is equal to a difference
between Larmor frequency o, and angular frequency of rotating coordinate system
relative the fixed one. In other words, the effective magnetic field is acting in a
rotating coordinate system, and is equal to
H=H+o/y=H-H", (4)

where H* = —o/y. It is clear that, when o = w,, the precession disappears and both

vectors G and p become fixed in a rotating coordinate system; this corresponds to
effective field H'=0.
A

H Using the obtained result it is easy to

determine the motion of moments at simultaneous

Ho| Hepr effect of static field H for which we suppose to be

directed along axis z of the Cartesian coordinate

system and field H, rotating around axis z with

angular velocity o (see Fig. 1). It is obvious that if

we go to the coordinate system that is also rotating
Fig. 1 around axis z with angular velocity o, then that field

H, will be presented in this system by a constant

vector, perpendicular to axis z. In this case, the static field H must be replaced by the
effective field H'=H + /y = H—-H". Now the equation of motion for moment G in

a rotating coordinate system becomes
DG/Dt=y[G(H +H,)|=7[GH ] (5)
Here Hge — is the vector sum of H' and H,. This equation of motion has also the

form of initial equation. Hence in a rotating coordinate system the angular
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momentum G and magnetic moment p will experience a precession around a vector

H e with angular velocity —yHgpr.
Assume that o=, and that the rotating field H, is switched on

Instantaneously at the time moment t=0 when the magnetic moment is along a field

H (H'=0). Then the motion of magnetic moment would be a precession around a
vector H, and at that during each half-period of this motion the direction of u would

change from parallel to field H to antiparallel and vice versa. In a rotating coordinate

system this motion occurs in a plane, perpendicular to H;. Since H;<<H the
frequency of precession around H; is much less compared with @,; so in a

laboratory coordinate system the motion of vector u represents a fast rotation around
the field H with simultaneous slow change of angle a(=pH) from 0 to 7 and back.

If the rotation frequency of H, is not equal to Larmor frequency of precession,

then the magnetic moment p in a rotating coordinate system precesses around the

field Hge . This field makes an angle & with direction of H defined by expression

tgd=H,/H'=H,;/(H+w/y). (6)
The value of angle « at the time moment t (it is supposed that =0 at t = Q) can be

found from simple geometrical proportions (see Fig. 2):
sin%:sinﬁ-sin(%yHEFFt), (7)

cosa =1-2sin’ 9-sin2(%7/HEFFt],

12
where yH ¢ :[(a)—a)o)z +(;/H1)2}

It is clear that the maximum value of « is equal to 26 and, if H;<< H (normal

case), this value is large only when the value of wis close enough to o,.



4 Thus the effect has resonant character;
this possibility to considerably change the

orientation of magnetic moment p relative a

HEFF . . . N
static field H by affecting with rather small

rotating field H;, is the phenomenon of
magnetic resonance. When w=w, the

magnetic moment p can be turned on 180°

by the effect of the rotating field H,. Ideally

it will occur at any value of the field H,

whatever small it would be, though, of

course, the flip velocity is proportional to the

value of H,.

1.2. Magnetic resonance in the systems of coupled spins

1. When dealing with the system of magnetic dipoles fixed in space, it is more
convenient to operate with magnetization M or magnetic moment of the total system,
rather than magnetic moments of individual particles. The magnetic moment of the
whole system is simply the vector sum of separate magnetic moments. Therefore the
system of spins as a whole will follow the classical equation of motion:

dM/dt = y[MH]. (8)
Our systems of interest are the systems in which the individual dipoles interact
weakly with each other, i.e. the dipoles for which the static magnetic susceptibility in
the high temperature approach #H/kT<< 1 obeys the Curie law:
Zo=Ny?h?1 (1 +1)/3kT 9)
(N — number of particles).

2. We will take into account the peculiarities of magnetic resonance in system

of coupled spins by disclaiming the assumption that all changes of orientation and the

9



value of magnetization are caused entirely by external magnetic fields, and in
addition taking into account two main types of internal interactions in condensed
matter: 1) interaction of dipoles with thermal oscillations of a lattice and 2) their
Interaction with each other. Both these interactions are usually much weaker
compared with the Zeeman interaction with external fields, but important due to their
cumulative effect during the long-term time intervals. The main distinction between
them is that only the first interaction (thermal excitations) can change the energy of
spin system whereas the second holds this energy invariable.

The main part of spin system energy is the Zeeman energy in a static magnetic

field—(MH)=-M,H . Hence the main changes in energy are due to changes of
magnetization component M, . Suppose that at some time moment the magnetization
component M, is not equal to its equilibrium value M, = y,H . We can assume (and
this guess appears to be a good approximation for reality) that magnetization
recovery occurs with the exponential law according to the differential equation:

M, =—(M, —M,)/T,. (10)
Here T, — characteristic time constant sometimes called the “longitudinal relaxation
time”, since it determines the changes of M, component, parallel to static magnetic
field. More often this constant is called the "spin-lattice relaxation” time as it is
related to energy exchange between spin system and lattice in which the dipoles are
embedded.

Interaction of two identical dipoles in strong field H can be described within
the classical point of view as follows. The first dipole p; precesses with the Larmor
frequency around field H and, hence, possesses a static component along this field
and a component which rotates in a plane perpendicular to the field. The static
component p, creates in the dipole p, location a weak static field (~y1/r3) which
orientation relative H depends on relative positions of spins. Since H is the strong
field it is affected considerably only by the component of weak field parallel or

antiparallel to it. Each spin in a lattice has a few neighbors with various relative

10



positions and orientations, therefore the static component of the local field has
different values in various places that leads to distribution of Larmor frequencies and

a broadening of resonance absorption line. The rotating component p, creates in the
location of p, the local magnetic field rotating with Larmor frequency p; which
coincides with Larmor frequency for p,. In turn it has a component in a plane,
perpendicular to H, and, hence, can appreciably change orientation of p, due to the

resonance phenomenon. The corresponding line width should be of order of a rotating
field magnitude. In the considered case it of the same order of magnitude as the local
static field and, hence, makes the comparable contribution to the broadening.

3. Here it is necessary to consider the distinction between homogeneous and

inhomogeneous broadenings. The line is considered as inhomogeneously broadened

if the width is caused by distribution of Larmor frequencies of various magnetic

moments in the sample. The origins of this distribution are manifold — from

heterogeneity of external magnetic field to the local changes of gyromagnetic ratio »
caused by interaction of dipoles with their environment. Whatever the origin is, the
iInhomogeneous broadening has one common feature: the phase coherence loss
caused by a fan-shaped discrepancy of individual precessing dipoles in xy plane is not
irreversible. There is a method known as "spin echo” with which help the phase
coherence can be recovered.

If the line width as a whole is caused by relaxation effects then the resonance

line is considered as "homogeneously broadened". The precessing components of a

dipole field induce the so-called "flip-flop™ transitions at which one dipole loses the
energy, and another gains it. The flip-flop process is most effective when dipoles
precess with identical frequency. At this mutual reorientation of the moments the

total value of M, is conserved and the total energy of system remains invariable. The

total values of M, and M,, on the contrary, are not conserved; as a result of

y!
reorientation of spins there is a gradual violation of phase coherence between the
components of individual dipoles in xy plane, and precessing magnetization in this

plane decreases gradually to zero. The flip-flop process sets the "true" time of

11



transverse or spin-spin relaxation T,. Following Bloch, we suppose, that the

magnetization components M, and M y obey the differential equations:
M =My [T, My =—M, /T,. (11)

4. As before, we assume that spin system is affected by static magnetic field

directed along axis z, and field H, rotating with frequency @ in xy plane and with
components  H;, =H,coswt, H,, =H,sinet. Equations of motion for the
magnetization (8) are as follows:
M =7(MyH =M H,sinot),
My, =y (-MyH + M H, coswt), (12)
M :yHl(MXsina)t - I\/choswt).
With the account of relaxation effects they can be presented in the following form:
M — yHM , + M, /T, =—yH M sinat,
M, + yHM + M, /T, = yH,M, cos e, (13)
M, + (M =My )/T, = yHy (Mysinat — My cos ot )

For the first time these equations have been given by F. Bloch. It shall be noted that
unlike the equation (10), which is valid for any aggregated state of substance, the
equations (11) are valid, strictly speaking, only for the magnetic moments at fast
motion relative each other, i.e. for fluids and gases. From the equation (11) it follows

that the transverse magnetization amplitude decay with time has the exponential law.

It can be shown that exponential decay of transverse magnetization ~exp(—t/T2)

corresponds to the Lorentz form of the resonance line:

f ()= 1 T 1 Ao (14)

i 1+(a)—a)0)2T22 ) ”.(Aa))z +(a)—a)0)2

(T2‘1 = Aw - line width). However it is known that magnetic resonance lines in solids

have the form more often close to the Gaussian form. Below we will obtain the
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solutions of equations of motion for magnetization (13) for the case of slow passage
through the resonance conditions. Though it is impossible to consider these solutions
as adequate description of magnetic resonance in solids they can be used for the
qualitative analysis of the phenomenon.

Let's search for the stationary solution corresponding to the forced precession

of magnetization around a static magnetic field with angular velocity of the applied

field H,:
My =Msiné-cosat,
My =Msing-sinat, (15)
M, =M cosé.

Further it is convenient to replace the transverse components M, and M y with

M, =My +iMy =Msin@-exp(iot), 16)
M_ =My ~iMy =Msing-exp(-iot).

Suppose that the velocity of passage through the resonance conditions is very small

and for all moments of time the stationary requirements do prevail: M, =const or
Mk, = 0. Then Bloch equations have the following form:
M, +iyHM, + M, /T, =iyM,H, exp(iot),
M —iyHM_ +M_/T, =~iyM,H, exp(-iot), (17)
(M;=M,)/T. :%iy[M+exp(—ia)t)— M_exp(iat) |H,.
Taking into account that
M =—ioM,, M =—ioM_ (see (16)),
from the first two equations (17) we find

yH M,

M, = exp(iwt),
M_ = yHlMZ_ exp(—imt).
o+yH-i/T,

13



Substituting these solutions into the third Bloch equation (17) we obtain the

expression for longitudinal magnetization (w,=—yH):

_ 1+(a)—a)0)2T22
z

_ i (19)
1+(ar—mo)'5 +y°H{TT,

01

from which it is clear that the component M, is practically always equal to M, and

even at resonance it differs from M, only a little, if ;4—|12T1T2 <<1. The combination

of (18) and (19) gives the expression for the component of transverse magnetization:

[(a) — o) T, + i})/Hsz exp(zfiot)
1+(0-w,) T2 + Y2 HATT,

M, = M. (20)

In general, the solutions (19) and (20) correspond to magnetization vector precession

around the field H with angle &to it such that
tge:|mi|: 7’H1T22
z [1+(a)—a)0) TZZ}

In the majority of experiments the passage through the resonance conditions is

o (21)

carried out by change of field 4 and frequency @ remains constant. Therefore it is
convenient to express the value of tgd via the magnetic fields. Bearing in mind that
H™ = —w/y - resonant field for frequency wand AH :]7/7/T2 — resonance line width,
we can rewrite (21) in the following form:

Hl

BAH)2+(H——H*f}

Usually, when studying magnetic resonance by the stationary method the amplitude

tgl = (22)

y2-

of oscillating field is selected much less than the line width; therefore the angle &is

close to zero even at the resonance.

Let's find the behavior of projection of magnetization to a plane, perpendicular
to static magnetic field H at a resonance. The angle of this projection with a vector of

oscillating field H, can be found from the expression:

14



IMy| M, +M_|

tge = = : (23)
My (M, =M
Substituting (18) into (23) we obtain:
- AH
tgg:[TZ(w+7H)]1=H_H*. (23 a)

Thus, when passing the resonance condition the orientation of vector of transverse

magnetization relative the field H; changes from parallel to antiparallel; at resonance

(H =H *) the vector of transverse magnetization makes an angle r/2.with H, .

5. The oscillating part of magnetization can be expressed via complex
susceptibility:
M, =yH, exp(iot). (24)

Using (24) we will write the expressions for the real and imaginary parts of complex

susceptibility:

ya M, /H exp(iot) 4’ ;(_” (25)

0 Mo/H o Xo
Substituting (20) in (25) we obtain:

L’_ a)o(a)—a)o)
X0 (a)—a)o)z+(Aa))2+7/2H12T1(Aa)) (26)
" 0y A

X0 (a)—a)o)2 + (Aa))2 +7°HIT, (Aw)

(in equations (26) the notation Aw =1/T, is used).

Thus, the real part of susceptibility at resonance is equal to zero and away from a

resonance it is either positive (if @,> ®), or negative (if ,<®). The imaginary part

of susceptibility at resonance has a maximum and, if y*H/T, << Aw,

212y =0y/Ao. (27)
This means that imaginary part of complex susceptibility is much larger the static

susceptibility if the line width is small compared with resonance frequency.
15



Therefore the resonance methods are more sensitive in @, /A times compared with
the static methods.
6. It was mentioned above that when the requirement y?HZT,T, <<1 is fulfilled

the value of longitudinal component of magnetization differs a little from A7, even at
the moment of resonance. At resonance the value

1

M. =
L1+ R,

Mg (28)

can be small only as a result of saturation effect of resonance line by the strong radio-

frequency field H,. This occurs because the spin system absorbs energy of oscillating
fields with some rate dw /dt and this absorption elevates the spin system temperature
until dw /dt is not equal to velocity of energy transfer from spin system to the lattice.
Naturally, the temperature of spin system increases with H; and is higher the longer
are the times of spin-lattice (T;) and spin-spin (T, ) relaxations.

7. What is the energy of radio-frequency field absorption rate by spin-system?
In other words, what is the absorbed power?

We have

dH
M:_Md_H:_ MXCH_I_X+|\/|y_y ’ (29)
dt dt dt dt

where H, = H, coswt, Hy =H;sinat.

Substituting the expressions for the transverse magnetization components into (29)

My =ReM, =Re yH, exp(iot)=H,(x'cosat + y"sinat),

30
My =ImM, =H, (7 cosat - x"sinwt) (30)
and after averaging, we obtain
dw
. oHly'. (31)

Thus, the power absorbed at resonance is proportional to the imaginary part of

complex susceptibility. For this reason the quantity »" is often simply called the

absorption.
16



8. The frequency dependence of "(w) sets the line shape of resonance

absorption. In the microscopic theory it is shown that generally the imaginary part of

complex susceptibility is related to static susceptibility via relation
2" (0)=rm0f (o) y,, (32)

where f (@) —so-called line shape function, satisfying the normalization condition:

[ (@)do=1 (33)
0

With suitable choice of the line shape function f (@) the expression (32) is similar to

the expression (27) obtained by us from the macroscopic equations. Really, the
equation (27) can be easily obtained from the equation (32) substituting the Lorentz
shape function into the latter (14).

9. In expression (32), as we see, there are no quantum-mechanical quantities.

This is a consequence of the so-called Kramers-Kronig relations which relate the real

and imaginary parts of complex susceptibility. The derivation of these relations is

given in the monograph [1]. When applied to our problem the Kramers-Kronig

relations can be presented the following form:
1 OOCO,Z”(O)')dCO’
- 22

7' () S

) COOOZ, '\ dao'
#(o)= 2[5

(34)

From the first relation it follows that the static magnetic susceptibility is equal to:
1 [} )["(0),)
=7'(0)=—|——do. 35
ZO Z( ) ﬂt‘)‘ @ ( )

Really, substituting the imaginary part of susceptibility from (32) into (35) we obtain:

1% 7" (o)
o

da):zoj f(w)do= g,
0

Here it is necessary to note that equations (26) for ' and »", obtained by us from

the macroscopic equations of motion for magnetization, contain the terms with H;

17



and satisfy the Kramers-Kronig relations only in the extreme case of small H,. At

larger amplitudes H, there is a saturation, the spin system temperature becomes

higher compared with the temperature of crystal lattice, and magnetization is not a

linear function of H;. The Kramers-Kronig relations are valid only for the linear

systems.
1.3. Dipole-dipole interactions in the rigid lattice

The broadening of resonance lines is caused by variety of physical reasons.
The most simple among them is the inhomogeneity of the applied static magnetic
field. In the usual magnets that create magnetic fields of ~10* Gs the deviation of
magnetic field from the average value is about a few tenth of gauss; with the help of
special complex equipment this value can be lowered to a few milligauss. The field
homogeneity within the magnetic sample depends on the sample dimensions. The
samples with volumes from 0.1 cm?® to few cubic centimeters are usually used.

For the nuclei having the electric quadrupole moments a few resonance lines
can be observed. The occurrence of these lines is related to interaction of the nuclear
quadrupole moment with crystal electric field. This leads to considerable broadening
of the resonance lines. The equilibrium value of population densities of Zeeman
levels of the system is related to transitions between these levels due to effect of spin-
lattice interaction. Due to these transitions the system lifetime at any one level will be
limited that leads to additional line broadening on h/T, in energy units.

In this section we will neglect all effects mentioned above and will concentrate
our attention to the mechanism of resonance lines broadening related with dipole-
dipole interaction between the magnetic moments of various nuclei. In many cases
this is allowed. In particular, it is justified when spins of separate nuclei are equal to

1/2 (in this case the quadrupole moments of nuclei are equal to zero) and the spin-

lattice relaxation time is large enough.
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It is easy to estimate the order of magnitude of the dipole-dipole interactions
contribution to resonance line width. If the distance between the neighboring nuclei
with magnetic moments x is equal to r, then each nucleus will create a magnetic field

H, ok in the neighboring nucleus position, which order of magnitude is equal to:

H ok = /12 (36)
If we accept that r = 2 A and x =10 erg/gauss (two nuclear magnetons), then

H ok ; 1 Gs. Since this field can have various orientations relative to the static field

H,, the resonance frequencies of separate nuclei will be distributed within the range

of 1 Gs. The resonance energy absorption will be observed within the same range.
From these reasoning it follows that the resonance line width does not depend on
external magnetic field AH.

The classical expression for interaction energy of two magnetic moments p j

and p, has the following form:

pjn ("""k)("k"'k)

E. ik _o\"1] k) (37)

Jk r3 r°

jk J L
To obtain the quantum-mechanical interaction Hamiltonian it is necessary to put in

(37) the corresponding operators

ujzyjhlj, n=7.hl. (38)
instead of vectors 1y and By - The total Hamiltonian of system comprising N identical

Interacting spins in strong external magnetic field can be written in the form:

H=H,+H,, (39)
where
N
szﬂmHZ)” (40)
J=1

— energy in external magnetic field, and
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Hd:72h22 Ij;k_S(Ijrjk)(lkrjk) (41)

1<k | Tk Fik

— dipole-dipole interaction energy.
Further, to make the equations less cumbersome, where it cannot cause
misunderstanding, we will drop the indices j and k of spherical coordinates r, 6, and

@. Then
CRaoxH LUURTS
_3[_3'2'9(|+je_i¢’ + I_jei‘/’)+ IZj cose][g(lfe_w + |fei¢)+ 15 0039}}:

oo 1
=y°h zr_a(Ajk+Bjk+Cjk+Djk+Ejk+ij)’ (42)
where

Ajk=|}|§(1—3cosze),

B :_%(1—3cos29)(|+jll< 4 |_jlf)=%(1—3cosz¢9)(|zj|§ —|j|k),

3. —ip (] K ik
Cjk_—Esme-cosH-e (|z|++|+|z)’

3 i - - -
Djk:C’J‘.‘k:—ES|n0-c039-e'(p(IZJI'_‘+I_Jlg), (43)
3.2, 2ip; ],k
Ejj =—,sin"0-e "1,
F. —E* ——3sin2g.e21? 11k
jk Tk g T

Let's consider the interaction of j-th and k-th particles. Assume that we choose

the representation in which z component of spin of each particle is diagonal. Let

m;, m_, and M are the quantum numbers of projections Ij, Ik, and 1J+1K It is
i My q proj .17 z tlz

easy to show that operators (43) relate the states that differ as follows:
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A: Am. = 0, Amkz 0, AM= 0;
B: Am.=+1, Amkzml, AM = 0;

C: Am.= 0, Amk =1 AM= 1
1, 0, 0;

D: Am;= 0, Am =-1 AM=-1
-1, 0, -1,

Am;= 1 Am = 1 AM= 2

F: Amj:—l, Amk:—l, AM = — 2.

We see that matrices A and B are diagonal in M and commute with Zeeman energy
matrix (40).

Since the dipole-dipole interaction is much weaker compared to the Zeeman
interaction it is natural to try to find out what conclusions can be made about the

NMR spectrum and the resonance line shapes on the basis of perturbation theory.
Let’s consider the energy level E =—yhHM corresponding to Hamiltonian (40).

This level is strongly degenerate since there are many possible way to combine the

separate m; values and to obtain the value M =m+m+...+m; +...+my.

The perturbation described by the Hamiltonian Hy splits the level E,‘\),I Into many

sublevels. According to the first perturbation-theory approximation, the first order

contribution to level splitting E,?,l Is given only by those terms of the perturbation
Hamiltonian which have the matrix elements that differ from zero in the set |M > e
only those that acting on a state [M ) do not cause change of M value. Returning to

(44) we see that only operators A and B satisfy this requirement and should be

retained for evaluation of energy correction to E,?,, .

The term A has the same form as expression for interaction of two classical
dipoles and describes the interaction of one dipole with the static local field created
by the other dipole.
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The term B describes the interaction at which simultaneous flip of the two
nearest spins in opposite directions is possible. This part of the Hamiltonian
corresponds to resonant effect of the rotating local field.

The effect of term C is the admixture of small part of a state |M —1> to a state
|M> with unperturbed energy Eﬁ’,l . Thus, the exact eigenstate of the Hamiltonian H
will be presented in the form |M)+a|M —1)+..., where - small values of the
order of H , /H.

When affected by variable magnetic field there will be the transitions between two

Zeeman levels EJ, and Ep,, with the probability, proportional to:

2
o KM;”‘P My Moy My LMY g, 3 m},...,mh>‘ . (45)

N .
where I, = Y"1},
e

From the structure of matrix I)é it is clear that mj=m;+l, M'=M=], the

transitions are possible only between the neighboring Zeeman levels that give one

resonance line with frequency o,

This conclusion fails if we go to the next approximation of a perturbation
theory. Really, with the account of operators C, D, E and F it is possible to present
the correct wave functions in the following form:

MY = [M)+ @) [M +1)+a [M =1)+a,|M +2)+a,|M=-2),  (46)

where aj~H o, /H. Now the transitions AM =0, +2, £3 with frequencies

0, 20, 3w, are possible; the intensity of additional absorption peaks is

proportional to 2.
The matrix A + B is such that its structure would not change if we reverse the
sign of the diagonal elements. Therefore the solution of the secular equation

A+ B - E =0 gives for perturbation energy E the values which are in pairs identical
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by the module, but differ in sign. It is easy to understand that transition probabilities
between the two pairs of sublevels, different in energy signs only, will be identical
also. It follows that the shape of the main NMR line is symmetric relative the
resonance frequency.

The detailed calculations by a perturbation technique are impossible because of
large number of degrees of freedom in the system of magnetic particles. Therefore

the_moments method has a wide application, thus allowing to consider the magnetic

dipole interactions and to estimate the resonance line shape without the energy
spectrum evaluations. The analysis of magnetic resonance line shape by the method

of moments has been performed for the first time by Van Vleck.

1.4. Method of moments and the NMR line shape

The line moments are the important characteristics of the line shapes. The K th

moment M relative the frequency v, is determined by the following equation:

My = (V VO)K f(v)dv, (47)

O'—o8

where f (v) — line shape function.

Let'sset v—vy=u, f(v)="f(vy+u)=TF(u);

then M = I u" ¥ (u)du or for narrow lines:
A

My = _[qu_(u)du. (48)
Let's expand f (u) in Fourier integrals:
= J;Ogo "Wat, go(t):__[o f(u)e"du. (49)

The Fourier transform ¢(t) of the line shape function has a simple physical meaning.

Let the nuclear paramagnet to be in equilibrium state in static magnetic field H, so its
23



magnetization is along this field. If we apply a short intensive pulse of a radio-

frequency field so that H, L H to the sample, after its effect the magnetization M

will turn on some angle « relative the field H. Assume that the pulse duration is so
small that it is possible to neglect the relaxation phenomena. If the resonance line is
infinitely narrow then after the pulse termination the magnetization M will precess

with frequency v, = a)o/27z around the field with a constant angle .

This free precession can be detected from the signal induced by it in the coil,
surrounding the sample. If the line width is finite, then due to distribution of
precession frequencies the signal will decay during the time of the order of inverse
line width. It appears that the Fourier transform of the line shape function is simply

related to the free precession decay curve: the function ¢(t) is proportional to signal

amplitude of the free precession upon termination of 90° pulse.

Let's expand the function ¢(t) in Taylor series near the point t=0:

de(t) t2 dz(p(t)
o(t)=p(0)+t——= +o—5= (50)
dt | o 2! dt® |,
From (49) it follows that
d%p(t .
d:DK() ="My, (51)
t=0

and if all moments M, are known, then the shape function f(v) can be

reconstructed. There are the methods that allow calculations of the moments M

with high accuracy, however with growing K the evaluation becomes so cumbersome
that it is necessary to be restricted to calculation of a few first moments only.
Therefore for comparison of the theory with experiment one uses several typical
curves of which one chooses the closest to a line obtained from experiment. Then it is
necessary to compare the known moments of typical curve with the moments
obtained theoretically.

The Gaussian and Lorentz functions as the essentially different functions are

usually used as the typical curves.
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The Gaussian line

T 1 2/0 2
fo(u)= -expl—-u“/2oc 52
o (W)= p(-u?/25?) (52)
has mildly sloping peak and the slope goes down rapidly compared with the Lorentz
line:
— A 1
f(u)=—-+ : 53
=2 a7 &)
The line width, determined by equality:
f(Av/2) =%?(o) , (54)
for the Gaussian form is equal to:
(A V)G =20+2In2 =2.350,
and for the Lorentz form itis: (Av), =A.
For the Gaussian line the even moments are equal to:
M,=0° M,=3c".., M,,=1-3-5--(2n-1)5", (55)

For the Lorentz line the integrals (48) at K > 1 diverge. Therefore, the Lorentz line is
cut at frequencies v, £ «, where a>> A/2.
Then

3
M, =% M, =22
T 37

~ A a2n—1

WM, =2 .
2N oon-1

(56)

The Gaussian and Lorentz lines are symmetric in v,; therefore the odd moments are

equal to zero. To clarify the question how close is the given shape function to the

Gaussian or Lorentz line one often limits oneself to evaluations of the relation

M, /M2Z. For the Gaussian line
M,/MJ =3, (57)
for the Lorentz line
M, /M2 =azx/3A >>1, (58)
for the squared shape line M, /M2 =1.
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1.5. Evaluation of the moments

Let's return to the line width and the line shape broadened due to dipole-dipole
interaction. The second moment of the dipolar broadened line is the most simple and

Interesting, and according to (47) can be determined as

|v|2=<(v—vo)2>. (59)
Because of line symmetry the average frequency <v> Is equal to resonance frequency
v, and hence

M2:<v2>—vg. (60)
Let E, be the eigenvalues of the Hamiltonian H (39). Since the transition between the

levels n and n’ is characterized by the frequency

E) —Ey

Van = h
n’)

Z V%n'|<n| I'x
o

and the intensity, proportional to |<n||X ? then

2

')

v2)= — (61)

2. [(nf1xm)

n,n’
It is easy to show that this equation can be transformed into the form:
2
Sp(H I
<v2>:——[2 "2] . (62)
h“Spl

Really,

SP(H I~ 1H) = 3 (n[H 15~ I,H

n,n’

n)(n

Since the trace (spur) of matrix is invariant relative the similarity transformation, we

H 1y = IxH|n).

can assume that the matrix H is diagonal, and then
(n[H 1y = IyH [n") = v (n| 1

n’),
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(m

H 1y — IyH|n)=—hv,, (|1

x|n)

and, therefore
n’) 2
The denominator of the equation (62) is transformed as follows:

Spi = 3 )1 = 3|1

The validity of the equation (62) is proven. This equation, unlike (61), is very

Sp(H 1y —1,H) =—h22vnn,|<

convenient for calculations since the traces of matrices can be easily calculated while
the evaluation of eigenvalues of matrices at large N is related to big difficulties.

It is very important to bear in mind the following. In the equation (62) the
absorption is considered at all frequencies v from 0 to . It was pointed above that
there are additional absorption peaks at frequencies 0, 2v,,3v, besides the main

resonance line at frequency v,; though these peaks are weak (they are far from the

main line center), their contribution to the higher order moments is very large.
Therefore, since we are only interested in the main resonance line, the Hamiltonian

H=H,+H, in the equation (62) shall be replaced by the truncated Hamiltonian

H, +H 3, neglecting the part of dipole-dipole interaction operator H , that does not

commute with H , and, consequently, leads to occurrence of additional resonance
absorption peaks. From (44) it follows that
2142
h 3y 2p2 ik (i k
H9= S 7 ( ): (1 3005%0, ){I K2k 63)
Z ®jk j;(z i 3( )
The detailed calculations of the moments are reduced to evaluations of traces of

products of spin matrices

RIS

where a, 8,7 =X,Y,2; j=k #...#l. Itis useful to note that

Sp{( )nl(lg)nz...(l;)nm}zo, (64)
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if at least one of the powers n; is the odd number.

Using (64) it is easy to show that in (62) the cross terms that contain products

H,H 8 disappear, so (62) transforms into the following equation:

2
<V2>:_SP[HZ,|X]2+sp[H3,IX] | 5

h?Spl 2
If there would be no dipole-dipole interactions and H 8=0 then it is obvious that

<v2> =vZ. From (60) and (65) we obtain finally:

2
Sp|HY, I
277 [2d 2X] : (66)
h“Spl
Similarly, for the fourth moment we have
2
ol 131
M, = : (67)

o h*spl2
Evaluations (66) with the Hamiltonian (63) give the following expression for the

second moment (Van-Fleck equation):

2
3 W, (1—300329jk) 2

M, = hel (1 +1 Hz“]. 68

2=1p7" ( ); rfk [Hz] (68)

For the powder that contains crystals with chaotic orientations this expression

becomes simpler due to disappearance of angular dependence. By averaging over the

2
sphere we obtain (1—3cos2 6?) =4/5 and, hence,

2
3 (l—ScosZBjk)
M, :Zy4h2| (1+1)> 5 [(rad/s) °],
K Fik
_ 3 a2 6
hﬂz—zoﬂzy hI(L+Q%;”k. (69)

For a simple cubic lattice with constant a, we have:
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-6
erk =854,
and

}/4h2
M, =5.1 | (1+1)ay’ (70)

In the case of single crystal with a simple cubic lattice

4 2
M,=1237"_ . h (1 +1)ag%( A+ A3+ 43-0.187) [HZ’], (71)
7Z'

where 4,,4,, 45 — direction cosines of external field relative the crystal axes;
a,=a/2, where a — lattice constant.

We note that with the account of only a static part of dipole-dipole interaction

212
yh*> A
o jk]k

in the Hamiltonian, the second moment M, is 9/4:(3/2)2 times smaller. If, on the

contrary, we include all operators from A to F (see (43)) in our consideration, we will
obtain the overestimated value. Simple calculation for a powder shows that

replacement H 2 with the total Hamiltonian H , leads to M, increase in 10/3 times.
P d d 2

Knowing only M, it is impossible to make conclusions about the resonance

line shape. Therefore, using expression (67) it is reasonable to calculate also, at least,
the fourth moment. It is possible to present the result of this cumbersome evaluation

in the following form:

'V'4=(21) 8h4{ (Zb ] _%j%ibjgk(bjl_bkl)z_

_é;b?k[“2|(?+1)JHI(I3+1)T’ %)

2
o 3 1-3cos ejk

kT
2 rjk

where
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and the symbol Z means that there should be no two identical indices in
jkT=

threefold summation. The numerical estimate (72) is difficult even for a simple cubic
lattice if the magnetic field direction relative the crystallographic axis is arbitrary. If

we retain only the first term in curly brackets, then M, =3(M2)2, that corresponds

to the Gaussian line shape.

2. Continuous wave methods of NMR signal detection

l The experimental aspects of NMR are given in

detail in the monography [3]. We will concentrate
here only on principles and possibilities of various
methods of NMR detection. In the majority of

methods the detection of NMR signals is based on

'_-1
— "V
|
I
@]
o

T registration of changes of LC circuit characteristics

_ into which inductance coil the explored sample is

Fig. 3 placed. The ohmic losses in the coil of parallel

circuit L,C, (Fig. 3) can be taken into account by the series connected resistance T, .

These losses at frequency @ are characterized by a tangent of angle of losses tgd,
and a Q-factor Q:

f 1
tgo, =——=—;

For good coils Q ~100. The series connected resistance I, is equivalent to in-parallel

connected resistance R, related to 1, via the relation

R %:Q.

a)LO n
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The losses in the capacitor can be also considered by means of in-parallel connected
resistance R. However, in NMR experiments usually the circuits which Q-factor of
capacitors are considerably larger than the Q-factor of coils are used; therefore the
losses in capacitors can be neglected (R¢) = oo.
If we place the sample into the coil its inductance becomes equal to:
L= Lo(l+ 47[5;(),

where £ <1 — colil filling factor determined as the sample volume to working volume
ratio of the coil, and y = ' —iy"— complex nuclear magnetic susceptibility, which, as

it has been shown in the previous chapter, considerably changes in the vicinity of

resonance frequency @

2.1. Q- meter method

The block scheme of the installation is given in Fig. 4. The conductivity of a

parallel circuit is equal to:

G:l+i oCqy — 1 :
R a)LO(1+47z§;()

Since |4 n&y|<< 1 at resonance [a)co LLJ we have:
@Lq
G=14if%Z,
R ol

The conductivity changes at magnetic resonance causes the maximum change
of high frequency voltage in a circuit in the case when the circuit total current does
not vary in magnitude. This requirement is fulfilled, if RF generator has large internal

resistance or if the generator is connected with a circuit through the impedance Z,

which is very large in comparison with the impedance of a parallel circuit, i.e.
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|Z6|>>| G (for example the role of Z; can be played by large ohmic resistance

or small capacitor). The RF voltage loss on circuit is equal to:
U=1G =IR— 1 _lR—1
1+i478 7 (R jaly) 1+i47& yQ

and in the absence of NMR signal ( x =0)

U,=IR
Since | 47xQ | << 1, we can write

U =U,(1-i47& xQ)=U, +U ,,

32



RF RF Amplitude
—_ | - - >
generator amplifier detector
sample
‘; / ) Selective
‘ amplifier
Y
audio- Synchronous
frequency | detector
Stabilized XY -recorder
current supply X Y
A A
{ 111
Magnetic field
scanning unit
Fig. 4

where U, =—iU47EQ(x' —ix")=U . +iU,,; asa result the voltage change on a

4
circuit at a resonance

AU =U -Uy~U ,, =-U;- 47 2"Q

Is proportional to imaginary part of complex susceptibility, i.e. absorption. In the Q -
meter method the NMR signal appears in the form of very small modulation of the

voltage U,, existing also in the absence of the signal.
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2.2. Bridge detector

In the bridge detection method the circuit voltage U, is compensated,

summing with it, prior to amplification, the voltage U;, almost equal to it in

amplitude and almost opposite in phase. In this case the amplified and detected
voltage is equal to:

V =U,-U,-iU,-47& 4Q.
For stable operation of the device (block diagram of RF part is shown in Fig. 5) it is
desirable to avoid the total compensation and to hold the requirement |U0 -

U, | >>AU. The difference (Uy—U,) can have any phase ¢ relative to U. Writing

U, -U; =aU,exp(ip), where o — real quantity, we find:

RF generator P Attenuator »| Phase transformer
i ]
® > Summator
Y
D — RF amplifier

Fig. 5

V =aU, exp(igo){l— iMexp(—igp)} =
(04

47éEQ ArEQ
a a

=aU0exp(igo){ ——==(y'sing+ y"cosp)—i (;(’cosw—;(”sin(p)}.
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Due to smallness of 4z&yQ/a only the first two terms are essential in the curly

brackets. At ¢ =0 the amplitude V in the first approximation depends only on »”
(absorption signal), and at - (0:% only on 4’ (dispersion signal). At the

intermediate values of ¢ the incoming voltage from the bridge output on the high-

frequency amplifier contains a mixture of absorption and dispersion signals.
2.3. Bloch method (Crossed-coil method)

This system is similar in construction and operation to a bridge in which,
however, the functions of creating and recording the high-frequency field are carried
out by different coils. The field created by the transmitting coil equalizes the phases
of the separate precessing nuclear moments; the receiver coil serves for measuring of
the variable magnetic flux appearing as a result of precession of the net magnetization
vector.

If the axis of the transmitting coil coincides with axis x of laboratory

coordinate system, then the voltage AU induced by precessing magnetization in the

receiver coil will be proportional to dMy /dt. Since My = Im(;(Hlexp(ia)t)) (see

30)), then
dM
Ty: H1%(Z'Si” ot — y"coswt) = Hw( y'cosmt + y"sinwt).

; ; . ] 12
The amplitude of this voltage is proportional to ( /2 + z"*) .

If fields of coils are not strictly perpendicular, then the transmitting coil induces a

voltage in the receiver coil:
d :
Vv~ E( H, cos wt) ~ wsin et

that is summed with AU. If |V |>>] AU, then the voltage amplitude change on the

receiver coil at resonance is equal to
|V +AU|—|\/|~a))(".
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Thus, existence of leakage flux when using the crossed coils allows to observe not

"2

12 ) ) ..
(;('2 +y ) , but »"— pure absorption signal. From the last equation it follows that

the voltage amplitude change at resonance has a sign which is determined by sign of
o (=—yH) or gyromagnetic ratio sign y; as a result it is possible to find the relative
signs of two nuclear moments yhl and y'hl’, by comparing their signals at one

frequency, but in different magnetic fields.
2.4. Autodyne detector (generator of weak oscillations)

The operation principle of autodyne detector is as follows. The sample with
nuclear spins is located in the coil of LC circuit of the radio-frequency generator. The
susceptibility change in the area of resonance causes the frequency and amplitude
modulation of the generated high-frequency oscillations. Depending on whether the
subsequent receiver reacts on the changes of frequency or amplitude, after detection
the dispersion or absorption signal is obtained. In practice the autodyne detectors are
used, as a rule, for recording of absorption signals.

It is known that the parallel resonance circuit can be excited by connecting a
negative conductance in parallel to it, i.e. a two-terminal network with a volt-ampere
characteristic of the type:

i =Gu+G,u? +Gyu +...

The oscillations in a circuit arise only in case when the conductivity G, in the

working point is negative (N-type volt-ampere characteristic). We call the working
point the intersection point of the characteristics with axis u=0. Without loss of
generality it is possible to consider an inflexion point of a curve as the working point

i=i(u), i.e. to set G, =0. The stationary oscillations in a circuit with conductivity G
will be established under the requirement G, + G =G| <0. The amplitude of excited

oscillations can be found from the graph, by determining the extreme points of the

resultant volt-ampere characteristic from the requirement di/du=0:
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s~ 3
I=Gu+Gzu”.

The position of these points is determined from the expression

Gy
=t 2
3

whence the oscillation amplitude is

4G,

3

Vo =2u,=

The sensitivity E of the autodyne detector is characterized by voltage change in the
oscillating circuit at change of its conductivity:

Cdv, dv, 2 1

T dG  dG] 3G, V,

Thus, the sensitivity increases at contraction of oscillation amplitude.
The advantages of autodyne detectors are their simplicity and ease of resetting
in a wide frequency band. Their basic deficiency — difficulty to obtain very weak

radio-frequency fields H,, which are sometimes necessary to avoid the NMR signal

saturation effect in the samples with long relaxation times.

2.5. Double modulation

Strong NMR signals (for example, from water protons) can be observed on the
oscilloscope screen using one low-frequency modulation of magnetic field. Such
scheme of observation is realized, for example, in magnetic inductometers I1111-1 and
[111-9. The noise power in this scheme, proportional to transmission bandwidth
AF of a low-frequency amplifier, is rather high. For example, for observation of
undistorted NMR lines at modulation frequency of 50 Hz the transmission bandwidth
of low-frequency amplifier should be of the order of 10% Hz. For observation of weak
signals it is necessary to reduce the noise power, i.e. to reduce the transmission band

of low-frequency amplifier; in case of very weak signals the transmission bandwidth
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should be less than 0.1 Hz. It is very difficult to create low-frequency amplifiers with
such narrow transmission band and to stabilize the modulation frequency within a
small part of this band. Therefore we will do the following. Together with slow
change of magnetic field with the linear law (modulation 1) we will carry out fast and
shallow (much less than NMR line width) modulation with frequency €2 (modulation
2). The resulting change of magnetic field is:
H =at+H,, sinQt
(a=const, H,, (<AH/2)— modulation depth) leads to that the NMR signal is

transferred on fixed frequency €2, and its amplitude appears to be proportional to

derivative of absorption dy”/dH, and phases of frequency oscillation € on
different sides of a curve y"(H) differ on 180° (Fig. 6). The subsequent NMR signal

amplification is carried out by the special selective amplifier attuned on modulation

frequency €2 and having a transmission band AF = AQ/2x of the order of several

Hz. The selective amplifier is usually constructed as the negative feedback amplifier

through the band-rejection filter.
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Fig. 6

The latter more often uses the double T-shaped RC-filter (Fig. 7) which passes all
frequencies except the measured frequency (in our case except the modulation
frequency Q). As a result the negative feedback coupling operates on all frequencies
except Q2, and in whole the device works as the resonance amplifier. Due to narrow
transmission band of this amplifier the noise power on its output is essentially
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Fig.7. Scheme («) and frequency characteristic (b)
of double T —shaped RC — filter

reduced, and this leads, in turn, to effective increase of the signal-to-noise ratio.
Further increase of the signal-to-noise ratio is obtained by means of synchronous

detection which appears possible due to that the useful signal has a narrow frequency

spectrum near the fixed frequency Q.

2.6. Lock-in detector

In lock-in detector the output voltage of the selective amplifier

u(t)=uysinQt+e(t),
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represents a mixture of the useful signal and noise e(t), and is multiplied on the

periodic function F(t) with the period %ﬁ (reference voltage) and then is integrated

over the time 2z>>2/AQ; here AQ - frequency spectrum width of signal u(t),

limited by pass bandwidth of the selective amplifier.

Let F(t)=sinQt. Then on the output of the lock-in detector we have:

L UnT sin 2Qt
u(t)sinQtdt=U (7)+E(7)=—"2|1- +E(7).
[u(t) (r)+ E(r) =2 1- 2025 |+ E(r)
Since Q7 >> AQz >> 1 the useful signal is equal to u,z/2. The second term, due to
noise, is a random quantity; therefore it is possible to speak only about the mean-

square value <E2(r)>. The calculation results in expression:

where J(Q)- spectral density of noise power at frequency €2. This means that the

noise passes through the synchronous detector as through the filter with the

equivalent transmission band 2/z. The signal-to-noise ratio at the output of the

synchronous detector is:

U(7) 4 { T TZ
(E2(r)) "L2(Q)
and it appears to be proportional to %2, and, hence, can be made larger by increasing
the integration time.
Fig. 8 shows the scheme of elementary lock-in detector with the field-effect
(unipolar) transistor with two isolated gates. The integration time in the given scheme
Is determined by the time constant of a circuit r =2z -RC; by increasing R and C it is

possible to achieve the equivalent transmission band of the synchronous detector of

the order of few percent of hertz.
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Lock-in detector is also called a phase detector since a voltage on its output depends
on phases of a signal and a reference voltage ratio. In fact, if the reference voltage is

phase-shifted relative to signal on angle ¢, then on the lock-in detector output we

have:

T
U (r,(p)z'[uosith-sin(QH(p) dt =
0

Uy? sin2Qz ) . €0s2Qr
=——<C0Sp| 1- —sing
2 2Q71 2Q7

or, since Qzr>> AQr>> 1,

u
U(z,p) :%Tcow.
A most simple way of input signal u(t) multiplication with reference voltage

F(t) is the use of switch (for example, a diode switch). Then it is possible to present

a reference voltage in the following form:

F(t)= -1, -T/2<t<0,
+1 0<t<+T/2, T=27/Q.

Expansion of this function in a Fourier series has the following form:
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43 sin(2n+1)Qt
-

F(t)

If AQ << Q then the noise spectrum on the synchronous detector output has no

components with frequencies 3Q, 5Q, etc., therefore the terms of F(t) with n 0 do

not give the contribution to the resulting signal.

3. Description of the experimental facility

3.1. Purpose of the spectrometer and its technical characteristics

The given laboratory work uses autodyne type broad line continious wave
spectrometer intended for recording of NMR spectra in solids. The choice of nuclei
for resonance observation is determined by magnetic field source of the spectrometer
(permanent magnet) and practically limited to *°F and 'H isotopes. Recording of
signals and postprocessing of spectra is performed by means of the microcontroller
and tcomputer, respectively.

The spectrometer technical characteristics are as follows:

Operating frequencies of the autodyne generator ... ... ... ... ....5—-40 MHz
Magnetic field ... ... ... ... .. oo el e s e e el 1. 2B00 Oe
Modulation freqQUENCY ... ... co cor cer e e e e s e e e e 373 Hz
Peak amplitude of magnetic field modulation ... ... ... ... ... ... ... .... 50 Oe
Band of magnetic fieldscan ... ... ... ... ... ...coiiiiiiiieens wvn ol ... 100 Oe
Voltage amplitude in the sample coil ... ... ... ... .. ... ... ... ... ....50-500 mV
High frequency amplification gain... ... ... ... ... ... ... ... ... ... ... ... 30dB
LF-path amplification gain... ... ... ... ... ... coi i vet et v en e ... 100 dB

3.2. Block diagram of facility and principle of operation

The spectrometer block diagram is shown in Fig. 9. The inductance coil with
the sample is located in a bore of permanent magnet. For slow change of magnetic
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Fig. 9. Block diagram of spectrometer

field the coils for magnetic biasing shown by thick lines on the block diagram are
used. The modulation coils are located in the immediate proximity of the sample.

The autodyne detector includes the diode amplitude detector of the high-frequency
oscillations of the generator, which is applied to the input of the selective amplifier of
the recording system, that amplifies the voltage with a frequency of 373 Hz. The
amplified low-frequency voltage is applied to the input of the lock-in detector. The
output voltage of audio-signal generator which simultaneously is applied to the
modulation coils is used as a reference voltage of the lock-in detector.

The output of recording system is connected to input of analog-to-digital
converter (ADC) of microcontroller ATMEGA 8535. Slow magnetic field scanning is
carried out by the same microcontroller with the help of the digital-to-analog
converter (DAC). Thus, for each measured point of NMR spectrum the
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microcontroller sets the magnetic field intensity and measures the value of derivative
of absorption signal. Then this data is transmitted to the computer and mapped on its
screen in the form of NMR spectrum.

The autodyne detector is assembled according to the modified Pound-Knight
scheme with two FET transistors KT312 (see Fig. 10). The first stage is common
drain amplifier, second - common gate amplifier. The tank circuit is connected to the

+15V ’ I
2k
1n0 S0uH,
|
Km3zg | KII312A

}Tt 10n :l_|
~ 1p5 9—|—¢

o 42 Mo D 1k5 Dle
=
15 4 |
| 10n
.10 | 10K
_15V

KIT312A KT399A

> +15V To frequency meter

2p2
L |
— @3 |
To selective
AM7 k10 I[18 amnlifiar
10 )
10k

118 2n0
1

Fig. 10. Basic circuit of autodyne generator

-15V

first transistor gate (at the left) through a RC-circuit representing the high-pass filter,

suppressing penetration of low-frequency voltage into the generator induced on the
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coil because of magnetic field modulation. The oscillating mode is regulated by
means of the variable resistor connected to the circuit of the second FET source. The
current compensating the losses in the tank circuit, is applied to it through the
capacitor (positive feed-back). The tank circuit is connected with high impedance
input of the composite repeater (with field-effect transistor KP312A and bipolar
transistor — KT 399A). Further, the signal is applied to the amplitude detector for the
purpose of the subsequent lock-in detection, to frequency meter for the frequency
control, and also to millivoltmeter input — indicator of oscillation level.

Selective Compensation Attenuator
— | amplifier 1 g circuit >
From output
of  autodyne ‘
detector
Phase shifter Phase Selective
and attenuator | "|  shifter amplifier 2
From audio-frequency g
oscillator
Direct current Synchronous
To ADC'of the amplifier [* detector
microcontroller

Fig. 11. Block diagram of the recording device

After amplitude detection the signal is applied to the recording device (see Fig. 11).

Amplified by the selective amplifier, having the maximum amplification at the
modulation frequency (373 Hz), it enters the compensation circuit of the spurious
signal inevitably induced on the coil with the sample due to modulation of the
magnetic field. The phase and amplitude of compensating voltage are selected so that
in the absence of NMR signal there will be no voltage with frequency of 373 Hz at

the circuit output. The compensation control is performed by Lissajous figures on the
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oscilloscope screen, on which input X the reference voltage from the audio-frequency
generator and on input Y — the output signal of the compensation circuit are applied.
Then the basic selective amplifier is followed. The synchronous detector multiplies
the amplified voltage together with reference voltage with the subsequent integration.
The reference voltage phase is attuned so to obtain the maximum signal. The terminal
stage of the recording scheme corresponds to direct-current amplifier which output is
connected with ADC input of the microcontroller.

The principles of autodyne detection, double modulation and lock-in are

described in detail in sections 2.4, 2.5, and 2.6.
4. Recording and processing of NMR spectra

Recording and processing of NMR spectra is carried out by the computer with
the relevant software.

4.1. Program for NMR spectra recording

The window for recording program of NMR spectra is shown in Fig. 12.
The window contains the following elements:
1. Graphic information window;
2. “Start” — button for starting the magnetic field sweep;
3. “Stop” — button for stopping the magnetic field sweep;
4. “Save” — button for saving the measured spectrum;
5. “Freq” — window for input of NMR frequency;
6. “Quick” — switch button between the fast (for precheck) and slow magnetic
field sweeps;

7. “Pause” — button for temporary stopping the field sweep;
8. “X” — current value of magnetic field in DAC units;
9. “Y ”— current value of NMR signal derivative;

10. “Dev”— window where the value of area of the NMR signal derivative is

shown (for tuned spectrometer this value should be close to zero).
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Procedure for operation with the software.
1. Tune the output of direct-current amplifier (in the recording device) on zero

bias:

[Start] | | |X Y  Fre KHz
lklukaUzauseJ [ [ Dev

Fig. 12. Program window for NMR spectra recording

a) start magnetic field sweep and immediately stop it by button "Pause";

b) by rotating the bias controller of a direct-current amplifier achieve the value
close to zero in window “Y”’;

c) start field sweep by button "Pause™ and immediately interrupt the record.

2. Start magnetic field sweep.

At the moment of magnetic field passage through the resonance conditions input into
the window “Freq” the NMR frequency value measured by the frequency counter.

3. Stop recording and save the recorded spectrum into the folder [spectra].
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4.2. The program for calculation of magnetic field values

It is very difficult to relate the voltage value at DAC output of the
microcontroller and the magnetic field value in magnet bore since the magnetic field
Is affected by many parameters (for example, temperature of the magnet). Therefore,
in order to determine the value of magnetic field, the possibility to record the NMR
spectra at two slightly different frequencies is used.

Assume that we have recorded the NMR spectra at frequencies f; and f,. After
recording, it is possible to determine the positions of NMR lines for these two
spectra, corresponding to two values of magnetic field intensity n; and n, which are
given in some units (percent of scan value), not yet related with units of magnetic
field intensity. On the other hand, knowing a gyromagnetic ratio y, it is possible to
determine the values of magnetic fields H; and H,, corresponding to centers of two

NMR spectra recorded at different frequencies: H; = f; /.

Now we can compare H; and H, with n; and n, and calculate in the linear
magnetic field scan approach the value of magnetic intensity H for each point of the

NMR spectrum with value »:

H :H1+H2_H1(n—n1).

2 1

These calculations are carried out by the software for calculation of magnetic field
values and its window is shown in Fig. 13.
Procedure for operation with the software.

1. Input, if it is necessary, the value of gyromagnetic ratio for nuclei of the
corresponding ion into the window “gamma”.

2. Open with the button "Open" the main file with the data of NMR spectrum
measured at frequency f;. The spectrum will appear in the left part of the graph

window. If it is necessary input the NMR frequency into the window “f;”.
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3. Open with a button "OpenFreq" file with the data of NMR spectrum
measured at frequency f,. The spectrum will appear in the right part of graph window.
If it is necessary, input the NMR frequency into the window “f,”.

4. Set with the computer mouse the red dashed lines on centers of NMR lines
and press the button “Calculate H”. The abscissa axis of the main spectrum (left
window) will be recalculated in magnetic field intensity values, and the spectrum
saved into the same file with the new values of abscissa axis.

Let the other NMR spectra have been recorded together with that mentioned in

[OperFreq

(RI+[HH e R+ [H]H[»

f1| 0 KH gammal40. 05 MHz/ fj 0 KHz
Calculate 0 gauss/un

Open file with the data for H || C3 by the buttc#)

~ -1 : 4 oal NIR AP € ﬂ

Fig. 13. Program window for calculation of magnetic field values

different conditions (for example, in different magnetic field orientation relative the
crystal axes) at the same frequency f;. Then by opening the corresponding file in the
left part of graph window we will obtain a spectrum which abscissa axis will be
automatically recalculated in magnetic field intensity units, and the program will
automatically save the spectrum with new values of abscissa axis.
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4.3. Program for extraction of the part of spectrum with the NMR line and line width

evaluation

The parts of a spectrum that are located far away from the NMR line center do
not contain any information about the line shape. However these parts as well as the
whole spectrum contain the noise, which at evaluation of the second and the fourth
moments of lines increase the error in estimations of the values of the moments.
Therefore, to increase the measurement accuracy of the values of the moments it is
necessary to use only the central part of a spectrum containing the NMR line, and the
side parts of spectrum that contain only a noise should be removed. For this purpose
the program for extraction of part of spectrum with NMR line and line width
evaluation (see Fig. 14) is used.

NMR_cut X

Open | Save |Line width Gauss Cut

Set the green line on center of the NMR line and the red lines on
extremum points of NMR line; then press the button "Cut". The
spectrum will be cut by dark blue lines. Save the obtained
spectrum.

Fit the red lines with extremum points and record the value of line

width.

Fig. 14. Window of the program for extraction of part of spectrum

with NMR absorption line and line width evaluation
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Procedure for operation with the software.

1. Open a handled spectrum and set the green line on center of the NMR line
derivative.

2. Set the red lines on extremum points of the NMR line derivative. The dark
blue lines will simultaneously move and show the selected part of spectrum.

3. Cut the unnecessary parts of spectrum by button "Cut".

4. Save the obtained spectrum (button "Save").

5. Set again the red lines on extremum points and record the maximum value
of the NMR line width.

Task

1. Familiarize yourself with principles of NMR theory in solids and methods of
NMR signals detection (sections 1 and 2).

2. Study the structural and electrical schematic diagram of NMR spectrometer
(section 3).

3. Record F NMR lines in CaF, crystal at orientations of the static magnetic
field along the crystallographic directions [100], [110] and [111] (in other notations
C4, C, and C;, respectively).

4. Calculate the second and the fourth moments of the experimental curves;
compare the obtained moments with the theoretical values (see equations (68), (71)
and the Appendix); calculate the ratio M ,/M.°.

Appendix

Al. Data for CaF, crystal

Calcium fluoride CaF, belongs to space group Oﬁ and has the lattice constant

a=5.46A. Its structure can be viewed as a simple series of cubes formed by F~ ions
with Ca”" ions, being in the center of the every second cube. The crystal contains

only one sort of *°F nuclei with nonzero spin. The quadrupole effects are absent since
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the nuclear F spin is 1/2. The nuclei have large magnetic moments
(y:+2.63yN, v 127 =4007 Hz/Oe) and form a simple cubic lattice. The theoretical

values of 4-th root of the fourth moment (in oersteds) for various directions of
magnetic field relative the crystallographic axes are given below.

H Direction [100] [110] [111]

IM, 4.31 2.73 1.88

A2. Evaluation of the moments from experimental curves

The calculation procedure of the moments from the experimental curves

l'”:diH f [H —QJ Is reduced in essence to a double numerical integration and is
/4

explained by equations and Fig. 14 shown below.

Assuming that H - =h we have:
4

0 N

- gh” f (h)dh ) mz:“l(m5)”(%—12+AmJ5 ) r:zl(mo“)” (Ans*An) )
n If(h)dh mi[WJg rnil(gn_ﬁ/sm)

(Agt AL (A A ) 2"+t (Apy g+ A )Mk AN
AO+2(A1+ Ayt .t AN—l) '

=0

Av=00 Ay =ay 0 Ay = Ay tay 0

Avs=Ayotay 30 i Al=A+ta,-0;, Aj=A+3,0.
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For correct approximation of absorption curve the interval ¢ should be small enough:

the value of N should be of the order of 15 ... 30.

an-3 -
an_o -— Derivative
ani_1 \ -—— dg h

Primitive
An-2
AN—l
A n h ~
[\ 210
Fig. 15
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PART 2
PULSED NUCLEAR MAGNETIC RESONANCE IN SOLIDS

1. Classical description of pulsed nuclear magnetic resonance

1.1. Motion of noninteracting spins

The mechanical (J) and magnetic (n) moments of nuclei are related through

the following relation p=yJ, where y— scalar value called the gyromagnetic ratio.

Interaction of the magnetic moment with a static magnetic field H, causes the

V4

:Ho
Y

4
R

®o

Fig. 1. Precession of moment in the magnetic field

mechanical moment precession. The
equation of motion for magnetic
moment can be written as follows:
dJ/dt=pxH,, dp/dt =pxyH,
Or, finally, du/dt =@y xp.
The angular velocity o, =-yH,
(precession frequency @,=|wg|=yH,)

Is called a Larmor frequency.

If the magnetic field is applied along
the axis z the precession will occur as it
Is shown in Fig. 1, in the direction of
arrow, with a Larmor frequency; the

magnetic moment delineates a cone.

The given equation of motion is written in the fixed coordinate system which is also

called a laboratory frame (LF).
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1.2. Rotating frame (RF)

When considering a magnetic resonance it is convenient to use rotating frame
The latter has some angular velocity relative the laboratory frame. It is obvious that if
RCS rotates with the Larmor precession velocity the magnetic moment in this
coordinate system will be fixed. We will show this. Consider some vector function of
time F(t)=iF, +jF, +kF,, where i, j, k — the unit vectors directed along the

Cartesian coordinates, rotating with angular velocity Q. Then for these vectors the
following equations are valid:

di/dt = Q xi,

dj/dt =Qxj,

dk/dt = QxKk.
The total time derivative of function F is equal to:

dF ' i
dI::id|:>‘+j y+deZ+FXﬂ+Fyﬂ+FZ%:
dt  dt dt dt dt dt dt

_.dF, ARy dF, .
=1 m +] ™ +k o +Q><(1FX+JFy+kFZ).
The first three terms represent the derivative of function in RF. We will designate it
as E. Then ﬁ:OI—F—QxF.
ot ot dt

Thus, the equation of motion for magnetic moment in a coordinate system
rotating with frequency @ may be written as

d
d—?:pxyHo—coxu:ux(yHo+m)

(hereinafter we will use a usual designation for derivative of vector quantity,
stipulating thus what coordinate system is used). Really, if o=-yH, =), then

‘Z—i‘zo, and the precession is absent. It is possible to imagine that in RF the

precession is caused by the effective magnetic field, z—il: pxyHg , where

H. =H,+®/y,and absence of precession is a consequence of zero effective field.
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In macroscopical object the spins precess with arbitrary phase, therefore the total

moment M =Zpi is directed parallel to magnetic field H, as shown in Fig. 2 and

the equation for its motion in RF has the same form as for the individual moment —
spin:

dMm
F:MX]/Heﬁ:.

Suppose that except a field H,=Hgk there is a transverse field H, = H,i
directed along the x -axis of RF. This means that in LF it rotates with a frequency o

in direction of precession. In this case the effective field H =(HO —a)/y)k +Hii,

around which there is a magnetization precession (Fig. 3), is not zero even in the case

when o =, and, hence, it is possible to create transverse magnetization, affecting

by rather weak rotating magnetic field with a frequency close to the Larmor
frequency. This is called a magnetic resonance. In practice one inductance coil is
usually used for observation of nuclear magnetic resonance (NMR). At alternating
current flow through it there causes a linearly polarized alternating magnetic field

2H, coswt directed along the coil axis.

Hi Ho F

Fig. 2. Magnetic moments in the sample in equilibrium state.

Transverse magnetization is absent.
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Nevertheless, all reasons given above remain valid, as it is possible to present it in the
form of sum of two rotating fields with value H; but with frequency o in opposite

directions, as shown in Fig. 4.

RF LF

0 | -
Y
ot |ot ,
\\\\\\ H 1 o *:"/
/ H I 2H cosat
¥ 1
y
X
Fig. 3. Magnetization precession in RCS Fig. 4. Decomposition of linearly
in the presence of variable field. polarized field on two rotating fields.

The component which rotates in direction opposite to the precession direction (on the

right in Fig. 4) may be neglected. Really, if ® = @, and H; <<H,, then the effective

field in this case is H :(H0 + a)/j/)k +H,i = 2Hk, and this component would not

affect the magnetization.
1.3. Free induction decay (FID)

In pulsed NMR methods alternating (radio-frequency — RF) field is applied for
short period of time — in the form of a pulse. If we consider the case of exact

resonance @ =, then the effective field H 4 = H,i, and the magnetization rotates
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with angular velocity o,=yH, around the axis x. To obtain the maximum transverse

magnetization a rotation by 7 /2 angle is required. The pulse, causing such an effect,

is called 7/2- pulse. Its duration z should satisfy the requirement w,z7=7/2. As a

result the magnetization appears directed along the y -axis of RF, as shown in Fig. 5.

The magnetization static in RF rotates relative the inductance coil with Larmor

z
RF

X M

Fig. 5. Creation of transverse
magnetization with the help of

7 [2-pulse.

Y

frequency and creates  alternating
magnetic field. As a result an induction
electromotive force (EMF) on the caoil
turns is induced that is proportional to

@yM , which can be registered by radio

engineering methods. The alternating
voltage on the coil, created due to nuclear
induction, was called free induction decay
— FID. This voltage gradually damps due
to not exactly equal frequencies of
precession of different groups of spins
that can be caused by both heterogeneity

of a static magnetic field and the local

fields, which are created by spins (spin-spin interaction). This process was called the

transverse relaxation. Besides, due to spin-lattice (longitudinal) relaxation the spin-

system is returned to equilibrium state in which there is only a longitudinal

magnetization. It is generally accepted to designate these time constants,

characterizing these two processes, as 7> and 77 , respectively.

1.4. Spin echo
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The classical vector model allows us to explain the spin echo phenomenon. Its

essence is that if we apply one more pulse after the time period 7 (7 >T,) after z/2

pulse, twice longer in duration compared with the first one, then at the time 27 the
broken transverse magnetization will appear again (see Fig. 6). Supposing that the
origin of transverse magnetization decay is the dispersion of Larmor frequencies of

A

My 72 V

Fig. 6. Spin echo.

different groups of spins — spin packets, it is possible to explain the mechanism of
echo occurrence by considering the behavior of magnetizations of the two spin

packets with Larmor frequencies w, ,=w,+Aw. For the time 7 the magnetization

will deviate from the y -axis of RF on angles (+Awr Fig. 7a). Then the second pulse
will turn both magnetizations on angle x around the axis x (Fig. 7b), the precession
direction thus, naturally, will not change. As a result both magnetizations will
converge to the axis —y with the same angular velocity as that deviated from the y
axis. In time rafter the second pulse they will merge. Since this reasoning is valid for
any spin packet, then at the time moment 2 the transverse magnetization will be

completely recovered.
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a) 0)

Fig. 7. Values of magnetizations of two spin packets with Larmor frequencies

@ 2 =aptAw before (a) and after (b) 7 pulse.

2. Quantum-mechanical treatment of pulsed nuclear magnetic resonance
2.1. Equation of motion

Interaction of spin with a magnetic field is described by the energy operator,
the Hamiltonian H =-yhHI, where | — spin operator. Proceeding from the
Schroedinger equation it is possible to obtain the equation of motion of any
observable value (including magnetic moment). Suppose that the wave functions ¥
and @ satisfy the Schrodinger equation:

oYy, RO,
1 ot I ot

Then for any operator F it is possible to write the equation
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-%Jqumdr:j9§1F®d1+jqﬁF%?dr:
:j%ﬂPPquwr—J%qﬁFHdwrzgjqﬁ(HF—FH)®da

or C(Ij_lt::Lh[H ,F] since this is true for any matrix elements of F . At derivation we

used the relation (H ‘P)* =W "H valid for Hermitian operators.

It is easy to be convinced that the obtained equation is equivalent to classical
one if we choose the nuclear spin as operator, and the Hamiltonian describes the

Zeeman interaction:

F=ily+jly+kl, , H=—yh(Hl, +Hyly+H,1,).

2.2. Statistical ensemble of noninteracting spins.

Is it possible to describe the ensemble comprised of N identical noninteracting
spins in a magnetic field by means of the wave function of one spin N ? We will try to

do it supposing that the spin is equal to 1/2. We will write the wave function in the

" : 2 2
form of superposition of "pure” wave functions: v =a,¢ +a,7, ‘31‘ +‘a2‘ =1,¢

corresponds to the spin aligned along a field, and » - backwards. Then the

components of macroscopic magnetization of ensemble are determined by the

following expressions:

%: N<IX>_%N[aIa2+a2a1],
M

7—r3]’: N<Iy>:éN[ai"a2 a;al},
%ﬁ:NQQ:%NU%f_hAT
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: o _ 2 2 _
The last equality seems obvious if we consider that ‘al‘ and ‘az‘ are the relative

densities of level populations. However, from the first two expressions it follows that
the transverse magnetization is equal to zero only if a,=0 or a, =0, that is in case

of the full polarization of spins, that does not represent the facts. So, the assumption
that knowledge of one-particle wave function for the description of ensemble of spins
appeared to be untenable. To determine the transverse magnetization the ensemble

averages of products of coefficients: a1a2 = Zal shall be considered. For the

most complete description of spin system including the presence of interaction,
knowledge of all such products is required. The latter are the elements of density

: : : N
matrix p. The total number of spin system states is equal to (2I +1) , hence, the

size of density matrix is (2I+1)N><(2|+1)N and its elements are equal to

Pm,m :<m|p|m,>:a;1am"

If the density matrix is known it is possible to determine the average value of
any observable quantity: (Q)=Sp{Q}. The time dependence of density matrix is
described by the equation

h d
7 L)
In case if the Hamiltonian is time independent the solution of the equation is

—iHt iHy

p(t)=e N p(0)e N .
It is most simple to write the equilibrium density matrix in proper representation of

the Hamiltonian H . If we designate the energy values as Ei=<i|H|i>, then the
nondiagonal elements of density matrix are equal to zero, and the diagonal elements

(2141) "
( ,oo)ii _e G/KT Z e 5'¥T are equal to energy level populations according to

the Boltzmann statistics.
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2.3. Free induction decay and spin echo

The density matrix formalism allows to explain a free induction decay and spin
echo phenomena. We will write the equilibrium density matrix for system of N spins

OceH/kT

l: Po , where H — main Hamiltonian that describes the interaction of spins

(2140)"

with the magnetic field, H=—yhH,l,, |, = Z I;. In the high-temperature
I=1

approach (H <<KkT) it is possible to expand the density matrix into a series and
constrain with the first term of expansion e "/T ~1—H/kT , where 1 — unit matrix
(operator). Neglecting the latter, we will finally write p oc 1.

The effect of variable magnetic field on a density matrix and also its evolution
are described by means of exponential operators. One can show that the operator
e turns the spin operators on angle @ around the axis X, i.e. after the effect of

—i%lx i%lx
7/2 pulse e le s =1y.

In the event when the decay of transverse magnetization occurs due to a dipole-dipole

interaction of nuclear spins, further evolution of density matrix goes on according to

the following law:

SiH o HY
p(t)=e Nieh

where H'- secular part of the dipole-dipole interaction. (About the origins of
truncation of the Hamiltonian of dipole interaction see the description of laboratory

work “Continuous nuclear magnetic resonance in solids”). Thus, the transverse

magnetization will depend on time as
—i%t i%t
My (1) Sp{ply}=Spie Tiye Py t=G(t).
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We note that the latter expression is written in RF rotating with frequency o =yH,

and describes the free induction decay (FID) — a signal of pulsed NMR related to a
CW:signal f (@) by the Fourier-transform:

+00
f(w)= I G, (t)coswtdt.

In the case when the magnetic field heterogeneity is the origin of NMR line
broadening it is possible to demonstrate the occurrence mechanism of spin echo. The
density matrix after a /2 pulse is also equal to ly . The Hamiltonian of Zeeman

interaction of spins in a rotating coordinate system can be written as
H :—hZAa)i I; , Where Aw;=yH; -o,, and H. — magnetic field in the location of
I th spin. Then, at the time t=r,

p(z_):erZAa)ilizlye—ZZAa)iliz.
If at this time a 7z pulse is applied, then after it

__—irly rZAa)iliz —rZAa)iliz il —rZAwiliz TZAa)iIiZ
p(r,)=e""e e e X=e (—Iy)e :

Further change of density matrix goes on as

p(r+t) = Thoitle-rzall | yoryatty-tXsal
It is clear that when t'=7 (at the time t=2r), then p(27)=-1,. This means that

transverse magnetization recovered, but has changed its sign as it follows also from
the classical model.
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3. Nuclear spin-lattice relaxation

At low temperatures (and often at room temperature also) the observable
relaxation times are much shorter compared with that might be expected. The only
way to explain a relaxation is the assumption that even the purest crystals contain the
paramagnetic impurities. The nuclei relax by interacting with their electronic spins
which in turn relax into a lattice following the one of the mechanisms considered

previously.

3.1. Random field model

If the diamagnetic ion with the paramagnetic nucleus is located near the
paramagnetic ion then there is an interaction between them which can be generally

written as:
H S I = S * %I .
If the ion and nucleus are located sufficiently far from each other so the density

of electronic wave function on the nucleus is equal to zero, then the electron —

nucleus interaction is the pure dipole interaction (interaction of two dipoles):

_rsnh’ (i -rij)-5j-1ij)
r r

The transitions between the nucleus levels, i.e. a nucleus relaxation, can be
caused by the magnetic field fluctuations created by the electronic spin on a nucleus.

These fluctuations can arise due to change of & &), for example as a result of

electron — nucleus distance change (relaxation of the 1st type), or due to change of

vector of a spin with time S =S(t), for example due to spin orientation S change with

time due to electronic relaxation.
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Anyway it is possible to present the electron-nuclear interaction as follows:
I—A|SI =—y,h-Hg -1, where H, =Hg(t) - magnetic field created by the electronic

spin on a nucleus.
The spectral density of the fluctuating field created by the electronic spin on a

nucleus is:
J(w) = I<He(t)-He(t—r)>exp(—ia)r)dr,

where H(t)-Hq(t—7) — correlation function of fluctuations, <...> — average at the
given temperature.
If we write Hg, in a coordinate system where the axis z || Ho (external field),

introduce the angles ® and ¢ setting the vector r connecting a nucleus and an
electron, then we will obtain:

Ag =A+B+C+DIELE,
where A~S,1,; B~(S,1_+S_1,); C~(S,l, +S,1,);
D~(S,l_+S_1,); E~S,1,; F~S_I_.
We will assume that the distance between the nucleus and the electron is fixed,
and the fluctuating field with the Larmor frequency of nuclei arises due to fast
electronic relaxation. If the concentration of paramagnetic centers is small, then the

time of transverse relaxation of electronic spins is large (]7/T2e ~Aw, - ESR line
width, or to be more precise, its homogeneous part) and then the fluctuating fields
having some spectral density at NMR frequency are created by relaxation of
longitudinal magnetization of electronic spins, i.e. S,, and the time of spin-lattice

relaxation of electrons T, serves as the correlation time. In the Hamiltonian of

dipole-dipole interaction we are interested in the terms containing operators which

can cause spin flip of nucleus, i.e. the terms, C and D.

Nk

D=C".
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Here ©® - angle between the magnetic field direction and a radius vector connecting
the nucleus and the electron. In both terms the second components are not necessary
to us since they cannot cause nuclear transitions.

The calculations show that

Ti_yl h? j <Hg(t)-He(t—7)>exp(-ie 7)dz =

=%7S7|2h2 sin2®-cosz®I<SZ(O)S (7)>exp(—io, 7)dz;

<SZ(0)SZ(T)>:%S(S+1 exp[ ki |J

1e

Re T exp(—ﬁ]-exp(—iw,r)dr =2Re T exp{—g}exp(—iwlr)dr _

le le

" me e 2T1e

t 2T, _
=2Re ; -Ie_xdx:—Re _ Tl |7
%m“w' 5 1+iom Ty,

1 2,2
= h?.r%sin?@®.cos2®-S(S +1). —& .
1n 7/37/ G+ 1+a)I2T1§:

. : - T.
More often the condition o, T,, > 1 is satisfied, therefore 1‘; 5= 21
1+ @ Tle @ Tle

Then, if we omit sin 20-0s @ I.e. the orientation dependence of T, , it is possible to

1n’

write:

2.2 2
1 _ysh S8+ 7 12 e o :[Hloc) 1

6 2 loc 2 2
Tin r W) Te 7y -Hg Te Hy Te

where Hjoc — a local field created by the electron spin on a nucleus.

N cth(gk_rj for direct processes; at T —0 cth(...)—>1, i.e. the obtained result

Tle

states that at low temperatures the nuclear relaxation rate via the paramagnetic

impurities tends to a constant. The experiment shows that it is not the case: at
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temperature lowering the nuclear relaxation rate decreases, approaching zero at 7—0.
This results from the fact that at low temperatures the electronic spins are essentially
polarized. The account of polarization (relative difference of population of electronic
energy levels) gives the additional factor in the equation for nuclear relaxation:

- T
i=37/|2}/§hzr_6 .5in?©®-c0s%©-S(S +1) —L—.(1- Poz)'
Tln on T

where P, = th(ha)O/ZkT).

3.2. Nuclear spin diffusion effect on nuclear relaxation via paramagnetic centers

Consider a chain of nuclei (I = 1/2) located at a distance a apart from each
other (Fig. 8). We introduce p; — the probability that the spin is aligned "upwards", p.
— the probability that the spin is aligned "downwards"”; then p+ + p. =1, p+—p-=p-—
polarization.

The general problem is to find how polarization in this system changes and

how the excitation propagates.
_+ * * + *_ The dipole-dipole interaction can induce the
a

simultaneous flips of the two neighboring spins due to the

term B ~ 1.1 ;. +1

+i'—]j —iI

,j» at that the Zeeman energy of

Fig. 8
the spin system is conserved (if the external field is much

larger than the local field). How to find the probability of these mutual flips?

There is a local field H, . ~7;—2(30032®—1)IZ on the given nuclear spin

created by the neighbor. The probability of flip for the given spin in this local field is

IOC)2 [<m £1]1;[m, >|2. But there is not only one neighbor at the given

T
W ==—(yH
i (v
nucleus, every spin creates its local field which, besides, by causing the flips of the
given spin, causes also a broadening of the NMR line. Hence, the local field has some

distribution around zero and the probability of transitions shall also have a factor that

69



accounts for this distribution. Occurrence of this factor can be understood: if the spin
that gives contribution to one wing of the NMR line flips, then this flip would hardly
can cause flip of the spin that gives the contribution to the other wing of the NMR
line since these two spins have different Zeeman energies, and at this transition the

total Zeeman energy is not conserved. Hence, W will change as follows:

W :%(yl-% )2g(w) For 1= 1/2.

loc

)2 |<m, 1] 1, [m, > g(w)i(ﬁ%

loc

The line over M, means the average local field. yl-(i/l%c

c%oc) = - second

moment of the NMR line. If broadening of the NMR line is homogeneous (caused
only by dipole-dipole interactions), and nuclear spins form the regular lattice, then:

exp{ (“’ZM o) } ie. g(w)=

2

at resonance frequency.

g(@)=—— =
J27M, \27rM,
Hence, W ~1/M2 - half-width of NMR line. Exact calculations for a simple cubic

lattice and a crystal crushed into powder give W = ,/M 5 /30 for probability of mutual

flips of pair of the neighboring spins.
Let's return to the linear chain of spins and try to write the kinetic equation for
the polarization in a point with coordinate x (for one of spins):
ap.(x)
ot
The first term reflects the fact that the probability for the given spin "up” is increased

=Wp_(x)[(p, (x+a) + p, (x=a)] -Wp, ()[(p_(x+2a) + p_(x-a)].

If at present the given spin is "down" and the neighbors are "up”. The second term
reflects the fact that the probability for the given spin "up" decreases if at present the
given spin is "up" and the neighbors are "down". Here we deal with the conventional
probability. It is necessary for two events to appear simultaneously and, hence, the
equation includes the product of probabilities.

The spin in our model can be only in "up" or "down" positions, therefore

p_(x)=1-p,(x).
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1 op (X)) _ _a)—
T = W L OO (x+2) + Py (x—a)]

—p, (LA - p(x+a)+1- p,(x—a)]= p,(X+a)+ p,(Xx—a)—2p,(X).
In the same way 1 op-(x)
W ot

For the polarization we obtain:

lop_1 0, \_
W at W at(p+ P-)

=[p,(x+2a)—p_(x+a)]+[p,(x-a) - p_(x=2a)]=2[ p, (x) = p_(x)],

or i.a_p: p(x+a)+ p(x—a)—2p(x).

W ot

= p_(x+a)+p_(x-a)-2p_(x).

If we consider that polarization does not significantly changes from point to point,

op 18%p )
p(xta)= p(x)i&&:o -a+EaX—2|X:0 a% +..
Then
1 op . 18 5 p. 18 » o°p 2
— - —=p(X)+—a+——7a"+ p(X)——a+——=a" -2p(x)=—=-a°%,
w ot PR 5 PO = o 2 e PO =72
e %:DAp; D:W-az[s_l-cmz];
2 2 2
Ap=a E+a E+6 5 (generalization for the three-dimensional case).
OX oy oz

The obtained equation is identical to diffusion equation: for diffusion there is a
change of substance concentration through the surface area AS normal to change
direction, the substance mass Am is transferred per time Az, proportional to a
concentration gradient dc/dx, area AS, and time interval Ar,

Am:—D-E-AS-AT.
dx

Since c=dm= dm . then A_m:_Dd_m.
dv dx-AS AT dx
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Let's estimate the order of magnitude for D. For example, we take = (1=1/2)
nuclei in crystal CaF,. The distance re_g = 2.73 A, the NMR line width for fluorine
y-2.50e=27-40065"1/Oe.

Hence, \[M, =250e-7=6.3-10*s™; W =M, /30=2.1-10%s"",

D=W-a°=2.1.10%s". 7.5:10"% cm? = 1.6.10™% cm%™. Usually D ~ 107 cm%s™.

Let's estimate the time for which the perturbation of polarization is transferred
on the distance equal to half distance between paramagnetic centers (PC) at
concentration of 0.1 %, i.e. on distance of the order of 30 ... 40 A. The mean-square
length of diffusion polarization per time t is equal to x2m =Dt/3, hence t~0.5...55.
It follows that the nuclei remote from the paramagnetic centers transfer their
excitation to the nuclei that are close to the paramagnetic centers due to spin diffusion
for 0.5 ... 5 seconds, and those, in turn, transfer energy through the paramagnetic
centers to a lattice.

In immediate proximity from PC the spin diffusion is difficult. Close to PC

there is a local field which value at the distance r from PC is created and is equal to
H|ocz/,ur3. If =ug, and r = 3 A (as for the nearest to e protons in LaES:Er® *
0.1%), then Hjoc = 343 Oe; at the distance of 6 A, Hi,c = 43 Oe; at the distance of
9 A, Hjoc = 13 Oe; at the distance of 12 A, Hjoc = 5 Oe.

If the proton NMR line width is 2 ... 3 Oe, then the probability of flip-flop
processes between the “normal” protons and the protons at which the field is different
from normal on the value of local field created by paramagnetic center, will be very

small if this field exceeds the NMR line width. This is evident from the equation for
W:

W ~exp[—(a)—a)0)2/2|\/|2]

where M, ~ A? — square NMR line width. If ‘a) _“’o‘ >A,thenexp[...] > 0.
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Thus, the nuclear spin diffusion near the

paramagnetic center is difficult. It is possible to

0 determine the size of this area supposing that it
Is limited by some sphere with the radius b (see

Fig. 9) on which surface the local field created
Fig. 9 by the paramagnetic center is equal to the NMR
line width for the nuclei remote from the paramagnetic center, i.e. 7Sh/b3 =AH,,.
The radius b is called the radius of spin diffusion barrier. It is assumed that the

uniform relaxation rate for all "normal” nuclei 1/Tq, is determined by averaging of

the rates 1/T1n(r) in a volume enclosed between the sphere with radius b and the

sphere with radius approximately equal to half distance between the paramagnetic

centers which is determined from the condition V-Ng = 1, or (4/3) R 3-Ns =1, where

Ns — number of PC in the unit volume (in 1 cm3):

R 2
N 2h
Vb

T T, (r) 5 3 |-|2 3 T1e

The equation can be rewritten in the other form if we remember that y¢ h/b3 =AH,,
and on the other hand, (AH, =7, h/a3, a — distance between nuclei). 1/a® = N,
(really, N, is equal to the number of nuclei in a cube with an edge of 1 cm. 1 cm s 1/a

lattice constants, i.e. in 1 cm® there is 1/a° unit cells (or the sites occupied with

nuclei), i.e. 1/a° nuclei). Thus AH, = 7, N .

AH |, AH,,
ysh 7/|th

.1 : : :
Using = = =1, we will rewrite the equation as follows:
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1 87 AHy AHy rsh® S(S+D) 1
S ysh 7/|th Hg 3 T1e

2
_87 S(S+D Ns 7_S(A_HHJ .i.(l_pZ)
= 2.

3) 3 Ny 7 Hg Tie

-(1-P§)=

2
87 SCHD 1 Ns 192 108 Zs-10% [2Hn| _306, 1 105 1061
5 3 N, 7 Ho Tin Tie

The nuclear relaxation rate is much smaller than electron relaxation rate.

In reality the considered model underestimates slightly the possibilities of
nuclear diffusion. Really, if the local field created by PC is increased "smoothly"
when approaching to PC, i.e. if the local fields "sensed" by the two neighboring
nuclei, differ less than NMR line width (though the local field itself can be stronger
in comparison with the NMR line width), then the diffusion between them
nevertheless is possible. In other words, the radius of diffusion barrier should be

determined not from the rigid condition yg h/b3 =AH,,, but from milder condition

h : :
aai(ys—BJ = AH,,, where a — lattice constant (a =N 3. This approach reduces
rer r=b

4 _
the radius of diffusion barrier and leads to (78/7’1 )]/ times growth of Ty, !

approximately compared with that obtained.
3.3. Nuclear relaxation via PC in the absence of nuclear spin diffusion

If the crystal contains enough the paramagnetic impurities it may happen that
the radius of diffusion barrier becomes larger than half of average distance between
the paramagnetic centers. In this case all nuclei appear in the area of difficult spin
diffusion; i.e. there is no "normal” nuclei. The excitation cannot be transferred from a
nucleus to a nucleus, each nucleus relaxes by itself through the nearest paramagnetic
centers. Then there are two questions:

1. What impurity concentration approximately should be?
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2. According to what law in this case the nuclear polarization after saturation
changes, i.e. how the recovery curve of longitudinal magnetization looks like in this
case?

The radius of diffusion barrier is b° ~ L/l AHn; AHp ~ 1,N;. The distance
between the paramagnetic centers is R ~ 1/Ng; b® ~ R — e | (1nN}) ~1/Ns; Ng/N; ~
Unl e ~ 10_3, I.e. the diffusion becomes difficult if the concentration of the
paramagnetic centers is >0.1 %.

The longitudinal magnetization recovery in "usual” case isp (t) = 1 - M{/ M,

= exp (-t/Tq1y). If each nucleus relaxes independently via the nearest paramagnetic

center then the relaxation rate is different for different nuclei and then p(t) may be

written as follows:

p(t) = exp{—t - ;(Tln(nj))l},

where summation is performed over all sites occupied by the paramagnetic centers.

The equation can be written in the following form:

t
t)= - ,
p(t) E[exp[ Tln(rij)J

where j enumerates again the sites occupied by PC. It will be more convenient if j run

over all sites of the lattice, both occupied and not occupied with the paramagnetic
centers. If the relative concentration of PC is equal to c, then the probability to find
the paramagnetic center by sorting all sites of the lattice is equal ¢, and the
probability that a site is not occupied, is equal 1 — c. Taking this into account it is

possible to rewrite p(t) as follows:

t
p(t) :H[c-exp{—_rln(rij)j+ (1-c) -1],

where | enumerates the lattice sites and the relaxation occurs if the given site is

occupied by the paramagnetic center.

It is more convenient to rewrite the equation for p (t) in the following form:
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p(t)=Fj[[1—0[1‘exp{‘nnzm)m'

If ¢ is small (estimates have already shown that the diffusion is difficult when c is
larger than 10'3, but really it is not much), it is possible to rewrite 1- ¢ (...) as the

result of expansion of the exponent,i.e. 1 —c (...) ~exp [-c (...)], then

i t
t) = —c|1-exp| - =exp| 2| 1-exp| - i
0 Hexp[ C( exp[ (i) ]] exp[ C;[ exp( mmm
t
< _cN 1— - dv |,
exp{ c ,J[ exp Tln(rij)ﬂ }

where N, — total number of lattice sites (or 1/V), ctN; = Ng — number of sites occupied

by PC, i.e. the absolute concentration of paramagnetic impurity.

If nuclei are coupled to paramagnetic centers by the dipole-dipole interaction,
YT, (r)=A-r®-sin?@-cos’®, dV =r?.sin@-dO-dp-dr =r?-dr-dQ,

where dQ — element of spatial angle. In this case

J‘{l—exp(—nzr)ﬂdv :I[l—exp(—A.t.rG. f (Q))JrzdrdQ,

where f(Q)=sin’@-cos’®.

Let's designate x= A-t-r °. f(Q) , then

1

r=(At-£)°xY8; 2= (At 1) x P dr = 6(A.t.f)“/6x—7/6dx.

Now we have
a3 L e
J[-exp(-ym)Jav =(A4"| (A1)
j[l exp(- ]x]/3 6§ Y3 fY0 gx.dQ =

:_%(A t J[l exp(—x) |x~ 3/zdxj'fj/2 Q)dQ .
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Thus, in case of relaxation via the paramagnetic centers in the absence of

nuclear spin diffusion we obtained that

p(t)—l—%—exp£— L),

) Tin
where
1 4 3 2 2 2 2 71 2
—=g 7 N§g 9™ ugyi—55 1-Py
Tln 9 | “cC

The obtained equation describes correctly the experiment if the paramagnetic

impurities are distributed uniformly over the volume. Generally

p (t) ~ exp [~ (UT1n) ™",
where D — dimensionality of distribution of the paramagnetic impurities. For flat

lattice D = 2, for linear D = 1.
4. Methods of relaxation time measurements

One of the advantages of a pulsed method in comparison with continuous wave
method is the possibility of direct measurements of the relaxation times — transverse
(spin-spin) and longitudinal (spin-lattice) times. The transverse relaxation can be
characterized by one parameter in the case when magnetization decay occurs

exponentially. The NMR signal decreases in e times for time T,. If there is the

broadening of the line caused by heterogeneity of the applied magnetic field or
distribution of internal local fields (so-called nonuniform broadening) then it is

possible to estimate T, from the FID. In this case the transverse relaxation time is

related to the NMR line width Aw via the simple relation T, = 1/A®. The nonuniform

broadening accelerates decay of transverse magnetization and FID decreases with the
time constant which can be designated as Tz*. The spin echo method allows to
measures the true value of T,. The spin echo amplitude depends exponentially on

time interval = as shown in Fig. 10a. The simplest, though not the most exact
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measuring method of the longitudinal magnetization time recovery, is the
measurement of FID amplitude or echo depending on the pulse repetition period T .

In this case the signal amplitude A dependson T as:

a)
A= A(0)exp(-27 /T,
T A
/\ ___________________________________ o
0 v 21 t
0)
‘ ‘ A= A(OO) [1 — exp(_' T/Tl];']
u -
72-/2 72'/2 ya . A ______________________________
¥ >
0 . t

Fig. 10. a) Measuring technique of the transverse relaxation;

b) Measuring technique of the longitudinal relaxation.

A(o0)[1-exp(-T/T) ].
The saturation — recovery method (Fig. 10b) is more popular. It is three-pulse
sequence. The first z/2 pulse destroys the longitudinal magnetization (saturation).
The second and the third z/2 and z pulses, respectively, are applied after time

which form a spin echo signal.
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The signal amplitude is proportional to the value of the longitudinal
magnetization at the time z. The time interval between the second and the third pulse
remains invariable.

The repetition period of all pulse sequence should be not less than 5T, .

5. NMR pulsed spectrometer

5.1. Purpose

The pulsed coherent spectrometer is intended for recording the NMR signals
and measurement of the spin-lattice and spin-spin relaxation times. The spectrometer
receiver is of direct conversion with quadrature detection. The transmitter and
receiver are broadband (5 ... 50 MHz). The tunable circuits: probe and the quarter

lambda network, that provides a quadrature of the reference voltages of synchronous

detectors.

5.2. Technical characteristics
Frequency band 5-50 MHz
Probe:
Operating frequency 13.740 MHz
Frequency band 330 kHz
Transmitter
Input impedance 50 Q
Video pulse input TTL
Output impedance 50 Q
Output power 25 W
Preamplifier of receiver
Input and output impedance 50 Q
Noise factor 1.5dB
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Gain 40 dB

Receiver

Input impedance 50 Q
Gain 60 dB
Band Width 100 kHz

5.3. Probe design

The inductance coil with the sample and the capacitor of the tank circuit are

located in the gap between the poles of electromagnet (see Fig. 11).

=L LR

to trasmitter to receiver

preamplifier

Fig. 11. Schematic diagram of the probe

With the help of inductive coupling the resistance of tank circuit at operation
frequency is matched with the wave resistance of a coaxial cable, output resistance of
the transmitter and the input resistance of the preamplifier of receiver — 50 Q.

The probe construction allows to alternately commute alternately the oscillating
circuit with transmitter and receiver. The transmitter is connected to the circuit at RF-
pulses by means of the diode keys when the voltage on the transmitter output exceeds
1 V. For protection of the preamplifier of receiver at pulses the network equivalent to

the quarter wave transformer is used. For a segment of line with length of quarter-
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wave (A/4) the relation z2 =Z,Z, relating the wave impedance of cable Z,, load
impedance Z, and the input impedance Z; is valid. The quarter wave circuit is
equivalent to this segment if its inductance and capacitance satisfy the relations
Zy= \/L/—C 1) :1/\/E, where Z, — wave impedance of the equivalent segment of

the line, and » — operational frequency of a spectrometer. During the pulse the

diodes on the output of A/4 chain are conducting, Z, is small, and therefore Z, is

much larger than 50 Q. The output power of the transmitter completely enters into the
circuit, and the high voltage at the preamplifier input is absent. In the absence of
pulses the transmitter is disconnected, and tank circuit is in matched junction with the
preamplifier input.
5.4. Operation principle

The functional assemblies and voltage waveforms in different points of a
spectrometer are presented on the block-diagram (Fig. 12). The harmonic oscillations
on a synthesizer output are modulated in the RF pulse-former by video pulses from
the generator I'5-82 output. Radiofrequency pulses are amplified and feed on the
probe. The NMR signal is amplified by the portable low-noise preamplifier, then by
the amplifier of the receiver and feed on the input of the quadrature detector. The
latter corresponds to the two analogue multipliers of voltages and the low-pass filter
(LPF) at which the phases of reference voltages are shifted on 772 relative each other,
I.e. are in a quadrature. The quadrature detector relays the signal spectrum to low-
frequency region on the value w, where @ — frequency of the frequency synthesizer,
and allows to distinguish the frequencies above and below the latter. LPF eliminates
the combination frequencies of the order of 2@ which are formed due to
multiplication. The output signals of the quadripole detector are proportional to

values of M, and M, of RF rotating with a frequency « with the corresponding

choice of the reference signal phase. The two output signals of the receiver can be
considered also as the complex signal which Fourier-transformation gives a spectrum

with zero frequency corresponding to the frequency o of a spectrometer.
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Fig. 12 Block diagram of a pulse spectrometer.
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6. Recording and processing of the pulse NMR signals

Recording and processing of NMR spectra is carried out with the digital
oscilloscope ACK-2167 and computer with the help of the corresponding software.

First of all, it is necessary to prepare the oscilloscope for operation and obtain
the image of complex NMR signal on its screen. Then, having established the
connection between the computer and oscilloscope to carry out data transmission and

its display on the computer.

6.1. Preparation of oscilloscope for operation and observation of NMR signals

For preparation of oscilloscope for operation it is necessary to perform the
following settings.

a) Perform the automatic calibration of the device. For this purpose it is
necessary to disconnect all cables from the input sockets. Open the SYSTEM menu
by the button UTILITY, press the button F3 (autocalibration), then — F2 (factory
settings). Select language by the button F4 (for example, Russian or English).

b) Set the channels of vertical scan CH1 and CH2. Open the menu of the
channel with the corresponding button CH MENU and set the following:

input — DC,

channel —on,

tester — 1x,

invert. — off.

c) Select the elements of timing control. Call the menu by TRIG MENU and
set the following:

type — single,

source — external,

type — front,

front — decay,
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triggering mode — standby,

input — DC.

d) Prepare the oscilloscope for measurements. Open the menu by MEASURE
button and set the measured quantity:

source — type
channel 1 — Vax,

channel 1 — Vpin,
channel 2 — Vax

channel 2 — Vpin,

and, by opening the corresponding menu by the button CURSOR set the following:
type — voltage,

source — channel 1 (or channel 2).

For both channels

cursor 1 -0.0 mV,

cursor 2-0.0 mV,

difference — 0.0 mV.

By handles VOLT/DIV set the division value of the vertical scale (for example, 5V).
All these settings will be necessary also for measurements of the relaxation time with
this oscilloscope.

For observation of the NMR complex signal form on the oscilloscope screen it
IS necessary to apply the output quadrature signal of the NMR spectrometer receiver
on the inputs of oscilloscope channels CH1 and CH2, in our case — the signal of spin
induction (SSI) in some orientation of the sample relative the magnetic field (for
example, H || [111]).

Arrange the signals of channels CH1 and CH2 on the screen in the opposite
sides from the central horizontal line and match zero levels of signals with it. Perform
fine-tuning of the magnetic field from the signal appearance on the oscilloscope
screen: the beginning of the registered signal decay of one channel shall concur with

the beginning of the registered signal decay of the other channel.
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Match the beginning of the registered free induction decay (FID) with central
vertical line on the oscilloscope screen by the horizontal position adjusting knob

POSITION. The so-called “dead time™ of the receiver t,,5 for this orientation of the
sample is determined as

tyg = tmax =7,
tmax— time, corresponding to a maximum of the observed SSI on the screen, 7 —

duration of the probing radio-pulse.
The voltage value in any point of the pulse can be measured with the help of

the horizontal cursors directly on the oscilloscope screen.

6.2. Start of data transmission and mapping to the computer. Data saving and

processing

Perform fine-tuning of the magnetic field from the signal appearance on the
oscilloscope screen and engage the NMR-stabilization. Further action and settings are
as follows.

1. Connect the oscilloscope with the computer by the USB cable.

2. Start the Oscilloscope program.

3. Establish connection between the computer and the oscilloscope.

a) Select successively the menu items

Communication — Port Setting.

In the appeared window check the setting Connect using — USB and the
presence of information about the oscilloscope Available port.

In case of its absence close the program, disconnect the USB cable and
repeat connection.

b) Select successively the menu items:
Communication — Continue data download (USB and Serial Port supported),
thereby starting the data transmission and mapping from the oscilloscope on the

computer.
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& owoN Oscilloscope Software QEJE'

Fle Yew Format [

e B#-: P

Cursor

Divisions:  [7~7]

Type: hone v

scale: v

scale: v
Type Yalue

automnatically check USB: & »

Fig. 13. The program for work with the oscilloscope.

Connect using: v
Awailable Ports: | 1. £5M: PDS7102T) v

Setking:
keep Getting Delay(ms): | 2000 =

[]5ave data file automatically ko below direckory

For there is a limit number of Files in one single directory of Windows File System{FAT16, FAT3Z, MTFS),
o the number of Files ko be saved is not certain, i is recommended to choose a direckary in NTES disk drive,
turn off the storage channels in device, and use short directory path ko save mare Files,

[ Ok ] [ Get Diaka now! l [Keep izekting now!

Fig. 14. USB Port settings.
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B OWON Oscilloscope Software
File Wiew Format BEEGGWT=laleyt8 Language Help
= & & | [E |_ Ports-Settings
il =) et Data Chrl-a

{,§"> Continue Data Download{USE and SerialPort supported)
: Stop Data Download

E Auko Player

CH1 20us s.00% J1
[+] cHz Z0us s.00% 1

Fig. 15. Start of the data transmission and mapping.

4. To save the data from the oscilloscope to a file it is necessary to successively
choose the menu items View — Data table, by opening a window shown in Fig. 16.

To save the data it is necessary to press the button SAVE AS.

In the appeared window for file selection (Fig. 17) it is necessary to create a
folder with the number of your group in C\TMP\ (it is created once at the first
saving). Then to enter a file name (do not forget to specify in it the current crystal
orientation) and type of the data. For further work in program Origin 7.0 (or the
earlier version) it is recommended to save the data in the ASCII format - Comma
separated value text (*.csv). For older versions of Origin it is possible to save the
data in Microsoft Excel - Excel (*.xls) format. For other software packages (Matlab,
MatCad, etc.) it is necessary to specify first a format of the input data of this package.

In the saved file the first column corresponds to the point number.
Therefore these digits at Fast-Fourier-Transformation shall be recalculated in the time
values. For this purpose it is necessary to remember the values of scanning speed of
oscilloscope Td (usually 20 us per division, with 10 divisions in all scale). Further it

IS necessary to determine the number of points N in the saved spectrum.
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Then the values of the first column shall be recalculated using the following equation:

.10-Td

where i —point number, t; —value of this point on a time scale.

CEX

M Data Table

CHIj1 CHzj1 |~ Urits: ()
1 -4000,00 120000 — | Save
2 -4000,00 1200.00
3 -4000.00 120000 sequence
4 -4000,00 1200.00 lcHt
5 -4000,00 120000
6 4000, 00 1200,00 Mcke
7 4000, 00 1200,00
8 400,00 1200,00
5 400,00 1200,00
10 ~4000,00 1200,00
1 ~4000,00 1200,00
12 ~4000,00 1200,00
13 -4000,00 1200.00
14 ~4000,00 120,00
15 ~4000, 00 120,00
16 -4000,00 1200.00
17 -4000,00 1200.00
18 -4000,00 1200.00
19 -4000,00 1200.00
20 -4000,00 1200.00
21 -4000,00 1200.00
22 -4000,00 1200.00
23 -4000,00 1200.00
24 -4000,00 1200.00
25 -4000,00 120000
6 4000, 00 1z0.00
[\’ \20n oy 8

Fig. 16. Data table.
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6.3. Spin-lattice relaxation time measurement by the SSI signal saturation method
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When measuring by this method it is necessary to determine the time for which
the NMR signal intensity U will decay in e times when decreasing the pulse period T
(item 3.3).

Switch on the current image on the oscilloscope screen. If necessary tune the
magnetic field and obtain the correct image of a curve on the screen, then engage the
NMR-stabilization of the magnetic field.

Select a reference voltage phase of quadrature detector of the receiver so that
the one of the total signal components is equal to zero. Then the second component
will be the total signal. The measurements shall be carried out at some point M of this
component.

Check up the presence of the one of horizontal cursors on the central horizontal
line of the oscilloscope screen (there shall be also zero levels of the signals of both
channels). Match the second horizontal cursor with point M on the signal image.
Record the corresponding T values (in ms) and U (difference of cursor indications in
V) in the table and plot the change of signal intensity versus the pulse repetition

period. Estimate the spin-lattice relaxation time using the equation

A= A(e)[1-exp(-T /Ty |.

Task
1. Set the parameters of the radio-frequency pulses of the transmitter on the
pulse generator —
pulse repetition 7=1s,
pulse duration 7 = 3.1 ps,
pulse amplitude A=5V,
triggering — internal, single pulses,

on frequency synthesizer —
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typeset the number— 6869, then the frequency value at the output /2 will be
determined from the equation v =(6869-4+4)/2.

Tune the field for resonance, activate the NMR-stabilization. Estimate the
duration of a /2 pulse (the signal amplitude is equal to zero for a 7 pulse).

2. Record the form of the complex NMR signal by points in orientations [100],
[110] and [111].
3. Measure the spin-lattice relaxation time in three orientations, changing the

pulse repetition period from 1 second to 10 milliseconds.

Additional task:

Compare the shape of signals with inverse Fourier transform of stationary
NMR signal (Laboratory practical work “Continuous wave nuclear magnetic

resonance”).
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