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PART 1 

CONTINUOUS WAVE NUCLEAR MAGNETIC RESONANCE IN SOLIDS 

Introduction 
 

The purpose of the given work is introduction to basics of a nuclear magnetic 

resonance (NMR) theory in diamagnetic dielectric crystals and with the experimental 

principles of nuclear magnetic resonance signals detection by continuous wave (CW) 

methods. This small handbook does not allow to cover with necessary depth even the 

basic aspects of CW nuclear magnetic resonance. Therefore the handbook can be 

viewed only as the elementary introduction into NMR, and the consistent and 

coherent treatment of the theory and experiment can be found in the following 

monographies: 

1. A. Abragam, The principles of nuclear magnetism. Oxford: Clarendon Press, 1961. 

2. C.P. Slichter, Principles of magnetic resonance – Springer-Verlag, Berlin, 1980. 

3. A. Lösche, Kerninduktion, Deutscher Verlag der Wissenschaften, Berlin, 1957. 

4. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, 

Oxford University Press, 1970. 

 

1. Basics of NMR theory in solids 

 

1.1. Motion of free spins. 

 

The concept of “free spins” implies that the magnetic moment of nucleus or 

atom does not experience interaction with other atoms of substance, and, strictly 

speaking, is applicable only to very dilute gases. In solids the atoms are bound with 

each other by forces of electrostatic and magnetic interaction; however the approach 

of free spins appears useful here for determination of motion behavior of the 

elementary magnetic moments affected by static and variable magnetic fields. 

The nuclear angular momentum G is expressed via the dimensionless spin 

vector I and has the form 

G = ħI, 
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where 2h π=h  – Planck constant. The value of nuclear spin I is the greatest possible 

value of component I in some direction (for example, set by external magnetic field). 

The nuclear spin is not identical with spin vector length, but is related with it via the 

equation ( )1I I= +I . 

The nuclear magnetic dipole moment µ is parallel or antiparallel to a vector of 

angular momentum G, therefore we can write 

µ = γ G = .γ Ih  

The quantity γ, called the gyromagnetic ratio, is positive if the magnetic moment is 

parallel to spin moment and is negative otherwise. The nuclear magnetic moments are 

measured in units of nuclear magneton: 

 230.505 10 erg GsNµ −= ⋅  

(compare with Bohr magneton 200.927 10 erg GsВµ −= ⋅ ). 

The magnetic dipole µ placed in magnetic field H is affected by the moment of 

force [ ].μH  This moment of force causes the change with time of vector of angular 

momentum G so we can write  

 [ ] [ ]или .d d
dt dt

γ= =
G GμH GH  (1) 

According to the solution of this equation, the vectors G and µ precess around a field 

H direction with angular velocity 0 γ= −ω H . How would this motion seem to the 

observer if he/she is in a coordinate system which rotates around an axis coinciding 

with direction of vector Н (rotating frame, RF) ? If such coordinate system rotates 

relative the laboratory coordinate system (laboratory frame, LF) with angular velocity 

ω, then the derivative ,d dtG  calculated in LF, and the analogous derivative 

D DtG  calculated in RF, are related by the equation 

[ ].d dt D Dt= +G G ωG  

Combining this equation with the previous one, we obtain the equation of motion for 

moment G in RF 

( ) .D Dt γ γ= +  G G H ω     (2) 
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This equation looks like the initial one, but differs from it, more explicitly, that 

instead of Н we have now .γ+H ω  Thus the motion of vectors G and μ  in a 

rotating coordinate system is also a precession, but with angular velocity 

 ( ) 0 .γ γ γ′ ′= − = − + = −ω H H ω ω ω  (3) 

As one would expect, this apparent precession velocity is equal to a difference 

between Larmor frequency 0ω  and angular frequency of rotating coordinate system 

relative the fixed one. In other words, the effective magnetic field is acting in a 

rotating coordinate system, and is equal to 

 ,γ ∗′ = + = −H H ω H H  (4) 

where .γ∗ = −H ω  It is clear that, when 0=ω ω , the precession disappears and both 

vectors G and µ become fixed in a rotating coordinate system; this corresponds to 

effective field 0′ =H . 

Using the obtained result it is easy to 

determine the motion of moments at simultaneous 

effect of static field H for which we suppose to be 

directed along axis z of the Cartesian coordinate 

system and field 1H  rotating around axis z with 

angular velocity ω (see Fig. 1). It is obvious that if 

we go to the coordinate system that is also rotating 

around axis z with angular velocity ω, then that field 

1H  will be presented in this system by a constant 

vector, perpendicular to axis z. In this case, the static field Н must be replaced by the 

effective field .γ ∗′ = + = −H H ω H H  Now the equation of motion for moment G in 

a rotating coordinate system becomes 

 ( ) [ ]1 .EFFD Dt γ γ′ = + = G G H H G H  (5) 

Here EFFH  – is the vector sum of ′H  and 1H . This equation of motion has also the 

form of initial equation. Hence in a rotating coordinate system the angular 

H  

γ∗ = −H ω  

EFFH  

0 1H  

Fig. 1 

′H  
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momentum G and magnetic moment µ will experience a precession around a vector 

EFFH  with angular velocity .EFFγ− H  

Assume that 0=ω ω  and that the rotating field 1H  is switched on 

instantaneously at the time moment 0t =  when the magnetic moment is along a field 

( )0 .′ =H H  Then the motion of magnetic moment would be a precession around a 

vector 1H  and at that during each half-period of this motion the direction of µ would 

change from parallel to field Н to antiparallel and vice versa. In a rotating coordinate 

system this motion occurs in a plane, perpendicular to 1H . Since H1<<H the 

frequency of precession around 1H  is much less compared with 0ω ; so in a 

laboratory coordinate system the motion of vector µ represents a fast rotation around 

the field Н with simultaneous slow change of angle α(=µH) from 0 to π and back. 

If the rotation frequency of 1H  is not equal to Larmor frequency of precession, 

then the magnetic moment µ in a rotating coordinate system precesses around the 

field EFFH . This field makes an angle θ with direction of Н defined by expression 

 ( )1 1tg .H H H Hθ ω γ′= = +  (6) 

The value of angle α at the time moment t (it is supposed that α=0 at t = 0) can be 

found from simple geometrical proportions (see Fig. 2): 

 1sin sin sin ,
2 2 EFFH tα θ γ = ⋅  

 
 (7) 

2 2 1cos 1 2sin sin ,
2 EFFH tα θ γ = − ⋅  

 
 

where ( ) ( )1

1 22 2
0 .EFFH Hγ ω ω γ = − +  

 

It is clear that the maximum value of α is equal to 2θ and, if H1<< H (normal 

case), this value is large only when the value of ω is close enough to 0ω . 
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Thus the effect has resonant character; 

this possibility to considerably change the 

orientation of magnetic moment µ relative a 

static field Н by affecting with rather small 

rotating field 1H  is the phenomenon of 

magnetic resonance. When 0ω ω=  the 

magnetic moment µ can be turned on 180° 

by the effect of the rotating field 1H . Ideally 

it will occur at any value of the field 1H , 

whatever small it would be, though, of 

course, the flip velocity is proportional to the 

value of 1H . 

 

1.2. Magnetic resonance in the systems of coupled spins 

 

1. When dealing with the system of magnetic dipoles fixed in space, it is more 

convenient to operate with magnetization M or magnetic moment of the total system, 

rather than magnetic moments of individual particles. The magnetic moment of the 

whole system is simply the vector sum of separate magnetic moments. Therefore the 

system of spins as a whole will follow the classical equation of motion: 

 [ ].d dt γ=M MH  (8) 

Our systems of interest are the systems in which the individual dipoles interact 

weakly with each other, i.e. the dipoles for which the static magnetic susceptibility in 

the high temperature approach µH/kT<< 1 obeys the Curie law: 

 ( )2 2
0 1 3N I I kTχ γ= +h  (9) 

(N – number of particles). 

2. We will take into account the peculiarities of magnetic resonance in system 

of coupled spins by disclaiming the assumption that all changes of orientation and the 

EFFH  

Fig. 2 

0 1H  

( )tμ  

( )0μ
 

α  

EFFH tγ
 

θ  ′H  

γ∗ = −H ω  
H  
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value of magnetization are caused entirely by external magnetic fields, and in 

addition taking into account two main types of internal interactions in condensed 

matter: 1) interaction of dipoles with thermal oscillations of a lattice and 2) their 

interaction with each other. Both these interactions are usually much weaker 

compared with the Zeeman interaction with external fields, but important due to their 

cumulative effect during the long-term time intervals. The main distinction between 

them is that only the first interaction (thermal excitations) can change the energy of 

spin system whereas the second holds this energy invariable. 

The main part of spin system energy is the Zeeman energy in a static magnetic 

field ( ) zM H− = −MH . Hence the main changes in energy are due to changes of 

magnetization component zM . Suppose that at some time moment the magnetization 

component zM  is not equal to its equilibrium value 0 0M Hχ= . We can assume (and 

this guess appears to be a good approximation for reality) that magnetization 

recovery occurs with the exponential law according to the differential equation: 

 ( )0 1.z zM M M T= − −&  (10) 

Here 1T  – characteristic time constant sometimes called the “longitudinal relaxation 

time”, since it determines the changes of zM  component, parallel to static magnetic 

field. More often this constant is called the "spin-lattice relaxation” time as it is 

related to energy exchange between spin system and lattice in which the dipoles are 

embedded. 

Interaction of two identical dipoles in strong field Н can be described within 

the classical point of view as follows. The first dipole 1μ  precesses with the Larmor 

frequency around field Н and, hence, possesses a static component along this field 

and a component which rotates in a plane perpendicular to the field. The static 

component 1μ  creates in the dipole 2μ  location a weak static field (∼ 3
1 rµ ) which 

orientation relative Н depends on relative positions of spins. Since Н is the strong 

field it is affected considerably only by the component of weak field parallel or 

antiparallel to it. Each spin in a lattice has a few neighbors with various relative 
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positions and orientations, therefore the static component of the local field has 

different values in various places that leads to distribution of Larmor frequencies and 

a broadening of resonance absorption line. The rotating component 1μ  creates in the 

location of 2μ  the local magnetic field rotating with Larmor frequency 1μ  which 

coincides with Larmor frequency for 2μ . In turn it has a component in a plane, 

perpendicular to Н, and, hence, can appreciably change orientation of 2μ  due to the 

resonance phenomenon. The corresponding line width should be of order of a rotating 

field magnitude. In the considered case it of the same order of magnitude as the local 

static field and, hence, makes the comparable contribution to the broadening. 

3. Here it is necessary to consider the distinction between homogeneous and 

inhomogeneous broadenings. The line is considered as inhomogeneously broadened 

if the width is caused by distribution of Larmor frequencies of various magnetic 

moments in the sample. The origins of this distribution are manifold – from 

heterogeneity of external magnetic field to the local changes of gyromagnetic ratio γ 

caused by interaction of dipoles with their environment. Whatever the origin is, the 

inhomogeneous broadening has one common feature: the phase coherence loss 

caused by a fan-shaped discrepancy of individual precessing dipoles in xy plane is not 

irreversible. There is a method known as "spin echo" with which help the phase 

coherence can be recovered. 

If the line width as a whole is caused by relaxation effects then the resonance 

line is considered as "homogeneously broadened". The precessing components of a 

dipole field induce the so-called "flip-flop" transitions at which one dipole loses the 

energy, and another gains it. The flip-flop process is most effective when dipoles 

precess with identical frequency. At this mutual reorientation of the moments the 

total value of zM  is conserved and the total energy of system remains invariable. The 

total values of xM  and yM , on the contrary, are not conserved; as a result of 

reorientation of spins there is a gradual violation of phase coherence between the 

components of individual dipoles in xy plane, and precessing magnetization in this 

plane decreases gradually to zero. The flip-flop process sets the "true" time of 
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transverse or spin-spin relaxation 2T . Following Bloch, we suppose, that the 

magnetization components xM  and yM  obey the differential equations: 

 2 2, .x x y yM M T M M T= − = −& &  (11) 

4. As before, we assume that spin system is affected by static magnetic field 

directed along axis z, and field 1H  rotating with frequency ω in xy plane and with 

components 1 1 1 1cos , sin .x yH H t H H tω ω= =  Equations of motion for the 

magnetization (8) are as follows: 

 

( )
( )

( )

1

1

1

sin ,

cos ,

sin cos .

x y z

y x z

z x y

M M H M H t

M M H M H t

M H M t M t

γ ω

γ ω

γ ω ω

= −

= − +

= −

&

&

&
 

(12) 

With the account of relaxation effects they can be presented in the following form: 

( ) ( )

2 1

2 1

0 1 1

sin ,

cos ,

sin cos .

x y x z

y x y z

z z x y

M HM M T H M t

M HM M T H M t

M M M T H M t M t

γ γ ω

γ γ ω

γ ω ω

− + = −

+ + =

+ − = −

&

&

&
 (13) 

For the first time these equations have been given by F. Bloch. It shall be noted that 

unlike the equation (10), which is valid for any aggregated state of substance, the 

equations (11) are valid, strictly speaking, only for the magnetic moments at fast 

motion relative each other, i.e. for fluids and gases. From the equation (11) it follows 

that the transverse magnetization amplitude decay with time has the exponential law. 

It can be shown that exponential decay of transverse magnetization ∼ ( )2exp t T−  

corresponds to the Lorentz form of the resonance line: 

 ( )
( ) ( ) ( )

2
2 222

0 2 0

1 1
1

T
f

T
ωω

π πω ω ω ω ω

∆
= ⋅ = ⋅

+ − ∆ + −
 (14) 

( 1
2T ω− = ∆  – line width). However it is known that magnetic resonance lines in solids 

have the form more often close to the Gaussian form. Below we will obtain the 
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solutions of equations of motion for magnetization (13) for the case of slow passage 

through the resonance conditions. Though it is impossible to consider these solutions 

as adequate description of magnetic resonance in solids they can be used for the 

qualitative analysis of the phenomenon. 

Let's search for the stationary solution corresponding to the forced precession 

of magnetization around a static magnetic field with angular velocity of the applied 

field 1H : 

sin cos ,
sin sin ,

cos .

x

y

z

M M t
M M t

M M

θ ω
θ ω

θ

= ⋅

= ⋅

=

 (15) 

Further it is convenient to replace the transverse components xM  and yM  with 

 
( )
( )

sin exp ,

sin exp .
x y

x y

M M iM M i t

M M iM M i t

θ ω

θ ω
+

−

= + = ⋅

= − = ⋅ −
 (16) 

Suppose that the velocity of passage through the resonance conditions is very small 

and for all moments of time the stationary requirements do prevail: zM const=  or 

0.zM =&
 Then Bloch equations have the following form: 

 
( )

( )

( ) ( ) ( )

2 1

2 1

0 1 1

exp ,

exp ,
1 exp exp .
2

z

z

z

M i HM M T i M H i t

M i HM M T i M H i t

M M T i M i t M i t H

γ γ ω

γ γ ω

γ ω ω

+ + +

− − −

+ −

+ + =

− + = − −

− = − −  

&

&  (17) 

Taking into account that 

 ,M i M M i Mω ω+ + − −= = −& &
 (see (16)), 

from the first two equations (17) we find 

( )

( )

1

2

1

2

exp ,

exp .

z

z

H M
M i t

H i T
H M

M i t
H i T

γ
ω

ω γ
γ

ω
ω γ

+

−

=
+ −

= −
+ −

    (18) 
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Substituting these solutions into the third Bloch equation (17) we obtain the 

expression for longitudinal magnetization ( )0 Hω γ= − : 

 
( )

( )

2 2
0 2

02 2 2 2
0 2 1 1 2

1
,

1
z

T
M M

T H T T

ω ω

ω ω γ

+ −
=

+ − +
 (19) 

from which it is clear that the component zM  is practically always equal to 0M  and 

even at resonance it differs from 0M  only a little, if γH1
2T1T2 <<1. The combination 

of (18) and (19) gives the expression for the component of transverse magnetization: 

 
( ) ( )

( ) 2

0 2 1 2
02 2 2

0 2 1 1 2

exp
.

1

T i H T i t
M M

T H T T

ω ω γ ω

ω ω γ
±

 − ± ± =
+ − +

 (20) 

In general, the solutions (19) and (20) correspond to magnetization vector precession 

around the field Н with angle θ to it such that  

 
( )

1 2
1 22 2

0 2

tg .
1z

M H T
M T

γ
θ

ω ω

±= =
 + −  

 (21) 

In the majority of experiments the passage through the resonance conditions is 

carried out by change of field Н and frequency ω remains constant. Therefore it is 

convenient to express the value of tgθ via the magnetic fields. Bearing in mind that 

H ω γ∗ = −  – resonant field for frequency ω and 21H Tγ∆ =  – resonance line width, 

we can rewrite (21) in the following form: 

 
( ) ( )

1
1 222

tg .
H

H H H
θ

∗
=

 ∆ + −  

 (22) 

Usually, when studying magnetic resonance by the stationary method the amplitude 

of oscillating field is selected much less than the line width; therefore the angle θ is 

close to zero even at the resonance. 

Let's find the behavior of projection of magnetization to a plane, perpendicular 

to static magnetic field H at a resonance. The angle of this projection with a vector of 

oscillating field 1H  can be found from the expression: 
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 tg .x

y

M M M
M MM

ε + −

+ −

+
= =

−
 (23) 

Substituting (18) into (23) we obtain: 

 ( ) 1
2tg .HT H

H H
ε ω γ

−
∗

∆
= + =   −

 (23 a) 

Thus, when passing the resonance condition the orientation of vector of transverse 

magnetization relative the field 1H  changes from parallel to antiparallel; at resonance 

( )H H∗=  the vector of transverse magnetization makes an angle 2.π with 1H . 

5. The oscillating part of magnetization can be expressed via complex 

susceptibility: 

 ( )1 exp .M H i tγ ω+ =  (24) 

Using (24) we will write the expressions for the real and imaginary parts of complex 

susceptibility: 

( )1

0 0 0 0

exp
.

M H i t
i

M H
ωχ χ χ

χ χ χ
+ ′ ′′

= = −  (25) 

Substituting (20) in (25) we obtain: 

 

( )
( ) ( ) ( )

( ) ( ) ( )

0 0
2 2 2 2

0 0 1 1

0
2 2 2 2

0 0 1 1

,
H T

H T

ω ω ωχ
χ ω ω ω γ ω

ω ωχ
χ ω ω ω γ ω

−′
=

− + ∆ + ∆

′′ ⋅ ∆
=

− + ∆ + ∆

 (26) 

(in equations (26) the notation 21 Tω∆ =  is used). 

Thus, the real part of susceptibility at resonance is equal to zero and away from a 

resonance it is either positive (if 0ω ω> ), or negative (if 0ω ω< ). The imaginary part 

of susceptibility at resonance has a maximum and, if 2 2
1 1H Tγ ω<< ∆ , 

 0 0 .χ χ ω ω′′ = ∆  (27) 

This means that imaginary part of complex susceptibility is much larger the static 

susceptibility if the line width is small compared with resonance frequency. 
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Therefore the resonance methods are more sensitive in 0ω ω∆  times compared with 

the static methods. 

6. It was mentioned above that when the requirement 2 2
1 1 2 1H T Tγ <<  is fulfilled 

the value of longitudinal component of magnetization differs a little from М0 even at 

the moment of resonance. At resonance the value 

 02 2
1 21

1
1zM M

H T Tγ
=

+
 (28) 

can be small only as a result of saturation effect of resonance line by the strong radio-

frequency field 1H . This occurs because the spin system absorbs energy of oscillating 

fields with some rate dW dt  and this absorption elevates the spin system temperature 

until dW dt  is not equal to velocity of energy transfer from spin system to the lattice. 

Naturally, the temperature of spin system increases with 1H  and is higher the longer 

are the times of spin-lattice ( 1T ) and spin-spin ( 2T ) relaxations. 

7. What is the energy of radio-frequency field absorption rate by spin-system? 

In other words, what is the absorbed power? 

We have 

 ,yx
x y

dHdHdW dHM M M
dt dt dt dt

 
= − = − + 

 
 (29) 

where 1 1cos , sin .x yH H t H H tω ω= =  

Substituting the expressions for the transverse magnetization components into (29) 

( ) ( )
( )

1 1

1

Re Re exp cos sin ,

Im cos sin
x

y

M M H i t H t t

M M H t t

χ ω χ ω χ ω

χ ω χ ω
+

+

′ ′′= = = +

′ ′′= = −
 (30) 

and after averaging, we obtain 

 2
1 .dW H

dt
ω χ′′=  (31) 

Thus, the power absorbed at resonance is proportional to the imaginary part of 

complex susceptibility. For this reason the quantity χ′′  is often simply called the 

absorption. 
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8. The frequency dependence of ( )χ ω′′  sets the line shape of resonance 

absorption. In the microscopic theory it is shown that generally the imaginary part of 

complex susceptibility is related to static susceptibility via relation 

 ( ) ( ) 0,fχ ω πω ω χ′′ =  (32) 

where ( )f ω  – so-called line shape function, satisfying the normalization condition: 

 ( )
0

1.f dω ω
∞

=∫  (33) 

With suitable choice of the line shape function ( )f ω  the expression (32) is similar to 

the expression (27) obtained by us from the macroscopic equations. Really, the 

equation (27) can be easily obtained from the equation (32) substituting the Lorentz 

shape function into the latter (14). 

9. In expression (32), as we see, there are no quantum-mechanical quantities. 

This is a consequence of the so-called Kramers-Kronig relations which relate the real 

and imaginary parts of complex susceptibility. The derivation of these relations is 

given in the monograph [1]. When applied to our problem the Kramers-Kronig 

relations can be presented the following form: 

( ) ( )

( ) ( )

2 2
0

2 2
0

1 ,

.

d

d

ω χ ω ω
χ ω

π ω ω

χ ω ωωχ ω
π ω ω

∞

∞

′ ′′ ′ ′
′ =

′ −

′ ′ ′
′′ = −

′ −

∫

∫
 (34) 

From the first relation it follows that the static magnetic susceptibility is equal to: 

 ( ) ( )
0

0

10 .d
χ ω

χ χ ω
π ω

∞ ′′ ′
′ ′= =

′∫  (35) 

Really, substituting the imaginary part of susceptibility from (32) into (35) we obtain: 

 ( ) ( )0 0
0 0

1 .d f d
χ ω

ω χ ω ω χ
π ω

∞ ∞′′
= =∫ ∫  

Here it is necessary to note that equations (26) for χ′  and χ′′ , obtained by us from 

the macroscopic equations of motion for magnetization, contain the terms with 1H  
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and satisfy the Kramers-Kronig relations only in the extreme case of small 1H . At 

larger amplitudes 1H  there is a saturation, the spin system temperature becomes 

higher compared with the temperature of crystal lattice, and magnetization is not a 

linear function of 1H . The Kramers-Kronig relations are valid only for the linear 

systems. 

 

1.3. Dipole-dipole interactions in the rigid lattice 

 

The broadening of resonance lines is caused by variety of physical reasons. 

The most simple among them is the inhomogeneity of the applied static magnetic 

field. In the usual magnets that create magnetic fields of ∼104 Gs the deviation of 

magnetic field from the average value is about a few tenth of gauss; with the help of 

special complex equipment this value can be lowered to a few milligauss. The field 

homogeneity within the magnetic sample depends on the sample dimensions. The 

samples with volumes from 0.1 cm3 to few cubic centimeters are usually used. 

For the nuclei having the electric quadrupole moments a few resonance lines 

can be observed. The occurrence of these lines is related to interaction of the nuclear 

quadrupole moment with crystal electric field. This leads to considerable broadening 

of the resonance lines. The equilibrium value of population densities of Zeeman 

levels of the system is related to transitions between these levels due to effect of spin-

lattice interaction. Due to these transitions the system lifetime at any one level will be 

limited that leads to additional line broadening on 1Th  in energy units. 

In this section we will neglect all effects mentioned above and will concentrate 

our attention to the mechanism of resonance lines broadening related with dipole-

dipole interaction between the magnetic moments of various nuclei. In many cases 

this is allowed. In particular, it is justified when spins of separate nuclei are equal to 

1 2 (in this case the quadrupole moments of nuclei are equal to zero) and the spin-

lattice relaxation time is large enough. 
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It is easy to estimate the order of magnitude of the dipole-dipole interactions 

contribution to resonance line width. If the distance between the neighboring nuclei 

with magnetic moments µ is equal to r, then each nucleus will create a magnetic field 

LOKH  in the neighboring nucleus position, which order of magnitude is equal to: 

 3 .LOKH rµ=  (36) 

If we accept that r = 2 Å and µ =10-23 erg/gauss (two nuclear magnetons), then 

1 GsLOKH ; . Since this field can have various orientations relative to the static field 

0H , the resonance frequencies of separate nuclei will be distributed within the range 

of 1 Gs. The resonance energy absorption will be observed within the same range. 

From these reasoning it follows that the resonance line width does not depend on 

external magnetic field Н. 

The classical expression for interaction energy of two magnetic moments jμ
 

and kμ  has the following form: 

 
( )( )

53 3 .
j jk k jkj k

jk
jkjk

E
rr

= −
μ r μ rμ μ

 (37) 

To obtain the quantum-mechanical interaction Hamiltonian it is necessary to put in 

(37) the corresponding operators  

 , .j j j k k kγ γ= =μ I μ Ih h  (38) 

instead of vectors jμ and kμ . The total Hamiltonian of system comprising N identical 

interacting spins in strong external magnetic field can be written in the form: 

,Z d= +H H H  (39) 

where 

 
1

N

Z z j
j

H Iγ
=

= − ∑hH  (40) 

– energy in external magnetic field, and 
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( )( )2 2

53
<

3
j jk k jkj k

d
j k jkjk rr

γ
 
 = − 
  

∑
I r I rI I

hH  (41) 

– dipole-dipole interaction energy. 

Further, to make the equations less cumbersome, where it cannot cause 

misunderstanding, we will drop the indices j and k of spherical coordinates r, θ, and 

ϕ. Then 

 ( )2 2
3

1 1
2

j j jk k k
z zd I I I I I I

r
γ + − − +

= + + −


∑hH  

 ( ) ( )sin sin3 cos cos
2 2

j j ji i i ik k k
z zI e I e I I e I e Iϕ ϕ ϕ ϕθ θθ θ+ − + −

− −    − + + ⋅ + + =      
  

 ( )2 2
3

1 ,jk jk jk jk jk jkA B C D E F
r

γ= + + + + +∑h  (42) 

where 

( )21 3cosj k
z zjkA I I θ= − , 

( )( ) ( )( )2 21 11 3cos 1 3cos ,
4 2

j j jk k k
z z jjk kB I I I I I Iθ θ− − ++= − − + = − − I I  

( )3 sin cos ,
2

jji k k
z zjkC e I I I Iϕθ θ + +

−= − ⋅ ⋅ +  

( )3 sin cos ,
2

j ji k k
z zjk jkD C e I I I Iϕθ θ − −

∗= = − ⋅ ⋅ +  (43) 

223 sin
4

,ji k
jkE e I Iϕθ −

+ += − ⋅  

223 sin
4

.ji k
jk jkF E e I Iϕθ − −

∗= = − ⋅  

Let's consider the interaction of j-th and k-th particles. Assume that we choose 

the representation in which z component of spin of each particle is diagonal. Let 

,j km m , and M are the quantum numbers of projections ,j k
z zI I , and .j k

z zI I+  It is 

easy to show that operators (43) relate the states that differ as follows: 



 21 

 
: 0, 0, 0;

: 1, 1, 0;
j k

j k

A m m M

B m m M

∆ = ∆ = ∆ =

∆ = ± ∆ = ∆ =m

: 0, 1, 1;

1, 0, 0;
j kC m m M∆ = ∆ = ∆ =

 

: 0, 1, 1;

1, 0, 1;
j kD m m M∆ = ∆ = − ∆ = −

− −
 

: 1, 1, 2;

: 1, 1, 2.
j k

j k

E m m M

F m m M

∆ = ∆ = ∆ =

∆ = − ∆ = − ∆ = −
 

We see that matrices A and B are diagonal in M and commute with Zeeman energy 

matrix (40). 

Since the dipole-dipole interaction is much weaker compared to the Zeeman 

interaction it is natural to try to find out what conclusions can be made about the 

NMR spectrum and the resonance line shapes on the basis of perturbation theory. 

Let’s consider the energy level 0
ME HMγ= − h  corresponding to Hamiltonian (40). 

This level is strongly degenerate since there are many possible way to combine the 

separate jm  values and to obtain the value 1 2 ... ... .NjM m m m m= + + + + +  

The perturbation described by the Hamiltonian Ηd splits the level 0
ME  into many 

sublevels. According to the first perturbation-theory approximation, the first order 

contribution to level splitting 0
ME  is given only by those terms of the perturbation 

Hamiltonian which have the matrix elements that differ from zero in the set ,M  i.e. 

only those that acting on a state M  do not cause change of M value. Returning to 

(44) we see that only operators A and B satisfy this requirement and should be 

retained for evaluation of energy correction to 0
ME . 

The term A has the same form as expression for interaction of two classical 

dipoles and describes the interaction of one dipole with the static local field created 

by the other dipole. 
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The term B describes the interaction at which simultaneous flip of the two 

nearest spins in opposite directions is possible. This part of the Hamiltonian 

corresponds to resonant effect of the rotating local field. 

The effect of term C is the admixture of small part of a state 1M −  to a state 

M  with unperturbed energy 0
ME . Thus, the exact eigenstate of the Hamiltonian Η 

will be presented in the form 1 ... ,M Mα+ − +  where α – small values of the 

order of .LOKH H  

When affected by variable magnetic field there will be the transitions between two 

Zeeman levels 0
ME  and 0

ME ′  with the probability, proportional to: 

1 1

2

1 2 1 2
,..., ; ,...,

; , ,..., ,..., ; , ,..., ,..., ,
N N

N Nxj j
m m m m

M m m m m I M m m m m
′ ′

′ ′ ′ ′ ′∑  (45) 

where 
1

.
N j

x x
j

I I
=

= ∑   

From the structure of matrix j
xI  it is clear that 1, 1;j jm m M M′ ′= ± = ±

 
the 

transitions are possible only between the neighboring Zeeman levels that give one 

resonance line with frequency 0.ω  

This conclusion fails if we go to the next approximation of a perturbation 

theory. Really, with the account of operators C, D, E and F it is possible to present 

the correct wave functions in the following form: 

 ( )1
1 1 2 21 1 2 2 ,M M M M M Mα α α α− −= + + + − + + + −  (46) 

where iα ∼ .LOKH H  Now the transitions 0, 2, 3M∆ = ± ±  with frequencies 

0 00, 2 , 3ω ω  are possible; the intensity of additional absorption peaks is 

proportional to 2α . 

The matrix A + B is such that its structure would not change if we reverse the 

sign of the diagonal elements. Therefore the solution of the secular equation 

A + B - Е = 0 gives for perturbation energy Е the values which are in pairs identical 
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by the module, but differ in sign. It is easy to understand that transition probabilities 

between the two pairs of sublevels, different in energy signs only, will be identical 

also. It follows that the shape of the main NMR line is symmetric relative the 

resonance frequency. 

The detailed calculations by a perturbation technique are impossible because of 

large number of degrees of freedom in the system of magnetic particles. Therefore 

the moments method has a wide application, thus allowing to consider the magnetic 

dipole interactions and to estimate the resonance line shape without the energy 

spectrum evaluations. The analysis of magnetic resonance line shape by the method 

of moments has been performed for the first time by Van Vleck. 

 

1.4. Method of moments and the NMR line shape 

 

The line moments are the important characteristics of the line shapes. The K th 

moment KM  relative the frequency 0ν  is determined by the following equation: 

 ( ) ( )0
0

,
K

KM f dν ν ν ν
∞

= −∫  (47) 

where ( )f ν  – line shape function. 

Let's set ( ) ( ) ( )0 0, ;u f f u f uν ν ν ν− = ≡ + ≡  

then ( )
0

K
KM u f u du

ν

∞

−
= ∫  or for narrow lines: 

 ( ) .K
KM u f u du

∞

−∞
= ∫  (48) 

Let's expand ( )f u  in Fourier integrals: 

 ( ) ( ) ( ) ( )1 , .
2

iut iutf u t e dt t f u e duϕ ϕ
π

∞ ∞

−∞ −∞

−= =∫ ∫  (49) 

The Fourier transform ( )tϕ  of the line shape function has a simple physical meaning. 

Let the nuclear paramagnet to be in equilibrium state in static magnetic field Н, so its 
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magnetization is along this field. If we apply a short intensive pulse of a radio-

frequency field so that 1 ⊥H H  to the sample, after its effect the magnetization M  

will turn on some angle α relative the field H. Assume that the pulse duration is so 

small that it is possible to neglect the relaxation phenomena. If the resonance line is 

infinitely narrow then after the pulse termination the magnetization M will precess 

with frequency 0 0 2ν ω π=  around the field with a constant angle α. 

This free precession can be detected from the signal induced by it in the coil, 

surrounding the sample. If the line width is finite, then due to distribution of 

precession frequencies the signal will decay during the time of the order of inverse 

line width. It appears that the Fourier transform of the line shape function is simply 

related to the free precession decay curve: the function ( )tϕ  is proportional to signal 

amplitude of the free precession upon termination of 900 pulse. 

Let's expand the function ( )tϕ  in Taylor series near the point 0 :t =  

 ( ) ( ) ( ) ( )22

2
0 0

0 ...
2!t t

d t d ttt t
dt dt

ϕ ϕ
ϕ ϕ

= =
= + + ⋅ +  (50) 

From (49) it follows that 

 ( )
0

K
K

KK
t

d t
i M

dt
ϕ

=
= , (51) 

and if all moments KM  are known, then the shape function ( )f ν  can be 

reconstructed. There are the methods that allow calculations of the moments KM  

with high accuracy, however with growing K the evaluation becomes so cumbersome 

that it is necessary to be restricted to calculation of a few first moments only. 

Therefore for comparison of the theory with experiment one uses several typical 

curves of which one chooses the closest to a line obtained from experiment. Then it is 

necessary to compare the known moments of typical curve with the moments 

obtained theoretically. 

The Gaussian and Lorentz functions as the essentially different functions are 

usually used as the typical curves. 
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The Gaussian line 

 ( ) ( )2 21 exp 2
2Gf u u σ
πσ

= ⋅ −  (52) 

has mildly sloping peak and the slope goes down rapidly compared with the Lorentz 

line: 

 ( ) 2 2
1 .

2 4Lf u
uπ

∆
= ⋅

+ ∆
 (53) 

The line width, determined by equality: 

 ( ) ( )12 0 ,
2

f fν∆ =  (54) 

for the Gaussian form is equal to: 

 ( ) 2 2ln 2 2.35 ,Gν σ σ∆ = =  

and for the Lorentz form it is: ( ) .Lν∆ = ∆  

For the Gaussian line the even moments are equal to: 

 ( )2 4 2
2 4 2, 3 ,..., 1 3 5 2 1 .n

nM M M nσ σ σ= = = ⋅ ⋅ ⋅ ⋅ ⋅ −  (55) 

For the Lorentz line the integrals (48) at K > 1 diverge. Therefore, the Lorentz line is 

cut at frequencies 0 ,ν α±  where α >> ∆/2. 

Then 

 
3 2 1

2 4 2, ,..., .
3 2 1

n
nM M M

n
α α α
π π π

−∆ ∆ ∆
= = = ⋅

−
 (56) 

The Gaussian and Lorentz lines are symmetric in 0ν ; therefore the odd moments are 

equal to zero. To clarify the question how close is the given shape function to the 

Gaussian or Lorentz line one often limits oneself to evaluations of the relation 
2

4 2 .M M  For the Gaussian line 

 2
4 2 3,M M =  (57) 

for the Lorentz line 

 2
4 2 3 1,M M α π= ∆ >>  (58) 

for the squared shape line 2
4 2 1.M M =  
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1.5. Evaluation of the moments 

 

Let's return to the line width and the line shape broadened due to dipole-dipole 

interaction. The second moment of the dipolar broadened line is the most simple and 

interesting, and according to (47) can be determined as  

 ( )2
2 0 .M ν ν= −  (59) 

Because of line symmetry the average frequency ν  is equal to resonance frequency 

0ν  and hence 

 2 2
2 0 .M ν ν= −  (60) 

Let nE  be the eigenvalues of the Hamiltonian Η (39). Since the transition between the 

levels n  and n′  is characterized by the frequency 

 n n
nn h

ν ′
′

−
=

E E  

and the intensity, proportional to 2
,xn I n′  then 

 

22

2
2

,

,

.
xnn

n n

x
n n

n I n

n I n

ν
ν

′
′

′

′
=

′

∑

∑
 (61) 

It is easy to show that this equation can be transformed into the form: 

 [ ]2
2

2 2 .x

x

Sp I
h SpI

ν = −
H

 (62) 

Really, 

 ( )2

,
.x x x x x x

n n
Sp I I n I I n n I I n

′
′ ′− = − −∑H H H H H H  

Since the trace (spur) of matrix is invariant relative the similarity transformation, we 

can assume that the matrix Η is diagonal, and then 

 ,x x xnnn I I n h n I nν ′′ ′− =H H  
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 x x xnnn I I n h n I nν ′′ ′− = −H H  

and, therefore 

 ( ) 22 2 2

,
.x x xnn

n n
Sp I I h n I nν ′

′
′− = − ∑H H  

The denominator of the equation (62) is transformed as follows: 
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, ,
.x x x x

n n n n
SpI n I n n I n n I n

′ ′
′ ′ ′= =∑ ∑  

The validity of the equation (62) is proven. This equation, unlike (61), is very 

convenient for calculations since the traces of matrices can be easily calculated while 

the evaluation of eigenvalues of matrices at large N is related to big difficulties. 

It is very important to bear in mind the following. In the equation (62) the 

absorption is considered at all frequencies ν  from 0 to ∞. It was pointed above that 

there are additional absorption peaks at frequencies 0 00, 2 , 3ν ν  besides the main 

resonance line at frequency 0ν ; though these peaks are weak (they are far from the 

main line center), their contribution to the higher order moments is very large. 

Therefore, since we are only interested in the main resonance line, the Hamiltonian 

Z d= +H H H  in the equation (62) shall be replaced by the truncated Hamiltonian 

0 ,Z d+H H  neglecting the part of dipole-dipole interaction operator dH  that does not 

commute with ZH  and, consequently, leads to occurrence of additional resonance 

absorption peaks. From (44) it follows that 

( ) ( ) ( )
2 2 2 2

0 2
3 3

3 11 3cos .
2 3

j jk k
z zd jk jk jk

j k j k jk
A B I I

r r
γ γ θ

< <

 = + = ⋅ − −  
∑ ∑ I Ih hH  (63) 

The detailed calculations of the moments are reduced to evaluations of traces of 

products of spin matrices 

 ( ) ( ) ( )21 ,
mn nnj k lI I Iα γβ ⋅ ⋅ ⋅  

where , , , , ; ... .x y z j k lα β γ = ≠ ≠ ≠  It is useful to note that 

 ( ) ( ) ( )21 ... 0,
mn nnj k lSp I I Iα γβ

  =  
 (64) 
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if at least one of the powers in  is the odd number. 

Using (64) it is easy to show that in (62) the cross terms that contain products 
0

Z dH H  disappear, so (62) transforms into the following equation: 

 

22 0
2

2 2

, ,
.Z x xd

x

Sp I Sp I

h SpI
ν

 +    = −
H H

 (65) 

If there would be no dipole-dipole interactions and 0 0d =H  then it is obvious that 

2 2
0 .ν ν=  From (60) and (65) we obtain finally: 

 

20

2 2 2

,
.xd

x

Sp I
M

h SpI

  = −
H

 (66) 

Similarly, for the fourth moment we have 

 

2
0 0

4 4 2

, ,
.

xd d

x

Sp I
M

h SpI

  
  =

H H
 (67) 

Evaluations (66) with the Hamiltonian (63) give the following expression for the 

second moment (Van-Fleck equation): 

 ( )
( )2

2
4 2

2 2 6

1 3cos3 1
16

jk

k jk
M I I

r

θ
γ

π

−
= + ∑h  [Hz2]. (68) 

For the powder that contains crystals with chaotic orientations this expression 

becomes simpler due to disappearance of angular dependence. By averaging over the 

sphere we obtain ( )221 3cos 4 5θ− =  and, hence, 

 ( )
( )2

2
4 2

2 6

1 3cos3 1
4

jk

k jk
M I I

r

θ
γ

−
= + ∑h  [(rad/s) 2], 

 ( )4 2 6
2 2

3 1 .
20 jk

k
M I I rγ

π
−= + ∑h  (69) 

For a simple cubic lattice with constant 0a  we have: 
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 6 6
08.5jk

k
r a− −=∑  

and 

 ( )
4 2

6
2 025.1 1 .

4
M I I aγ

π
−= +

h
 (70) 

In the case of single crystal with a simple cubic lattice 

 ( ) ( )
4 2

6 4 4 4
2 0 1 2 3212.3 1 0.187

4
M I I aγ λ λ λ

π
−= + + + −

h
 [Hz2], (71) 

where 1 2 3, ,λ λ λ  – direction cosines of external field relative the crystal axes; 

0 2,a a=  where a  – lattice constant. 

We note that with the account of only a static part of dipole-dipole interaction  

 2 2 3
jk jk

j k
A rγ −

<
∑h  

in the Hamiltonian, the second moment 2M  is ( )29 4 3 2=  times smaller. If, on the 

contrary, we include all operators from A to F (see (43)) in our consideration, we will 

obtain the overestimated value. Simple calculation for a powder shows that 

replacement 0
dH  with the total Hamiltonian dH  leads to 2M  increase in 10 3  times. 

Knowing only 2M  it is impossible to make conclusions about the resonance 

line shape. Therefore, using expression (67) it is reasonable to calculate also, at least, 

the fourth moment. It is possible to present the result of this cumbersome evaluation 

in the following form: 

 
( ) ( )

2 2
8 4 2 2

4 4
1 13

32 jk jk jl kl
k jkl

M b b b b
N

γ
π ≠

  = − − −  
 
∑ ∑h  

 
( )

( ) 2
4 11 38 ,

5 2 1 3jk
k

I I
b

I I
  + − +    +    

∑  (72) 

where 

 
2

3

1 3cos3 ,
2

jk
jk

jk
b

r

θ−
= ⋅  
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and the symbol 
jk l≠
∑  means that there should be no two identical indices in 

threefold summation. The numerical estimate (72) is difficult even for a simple cubic 

lattice if the magnetic field direction relative the crystallographic axis is arbitrary. If 

we retain only the first term in curly brackets, then ( )2
4 23 ,M M=  that corresponds 

to the Gaussian line shape. 

 

2. Continuous wave methods of NMR signal detection 

 

The experimental aspects of NMR are given in 

detail in the monography [3]. We will concentrate 

here only on principles and possibilities of various 

methods of NMR detection. In the majority of 

methods the detection of NMR signals is based on 

registration of changes of LC  circuit characteristics 

into which inductance coil the explored sample is 

placed. The ohmic losses in the coil of parallel 

circuit 0 0L C  (Fig. 3) can be taken into account by the series connected resistance Lr . 

These losses at frequency ω  are characterized by a tangent of angle of losses tg Lδ  
and a Q-factor :Q  

0

1tg ;L
L

r
L Q

δ
ω

= =  

For good coils 100.Q ∼  The series connected resistance Lr  is equivalent to in-parallel 

connected resistance ,LR  related to Lr  via the relation  

0

0
.L

L

LR Q
L r

ω
ω

= =  

Fig. 3 

0L
 

0C
 Lr  
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The losses in the capacitor can be also considered by means of in-parallel connected 

resistance .CR  However, in NMR experiments usually the circuits which Q-factor of 

capacitors are considerably larger than the Q-factor of coils are used; therefore the 

losses in capacitors can be neglected (RC) ≈ ∞. 

If we place the sample into the coil its inductance becomes equal to: 

 ( )0 1 4 ,L L πξ χ= +  

where 1ξ ≤  – coil filling factor determined as the sample volume to working volume 

ratio of the coil, and iχ χ χ′ ′′= − – complex nuclear magnetic susceptibility, which, as 

it has been shown in the previous chapter, considerably changes in the vicinity of 

resonance frequency 0.ω  

 

2.1. Q- meter method 

 

The block scheme of the installation is given in Fig. 4. The conductivity of a 

parallel circuit is equal to: 

( )0
0

1 1 .
1 4

G i C
R L

ω
ω πξ χ

 
= + − + 

 

Since |4 πξχ|<< 1 at resonance 0
0

1C
L

ω
ω

 
=  

 
 we have: 

0

1 4 .G i
R L

πξ χ
ω

= +
 

The conductivity changes at magnetic resonance causes the maximum change 

of high frequency voltage in a circuit in the case when the circuit total current does 

not vary in magnitude. This requirement is fulfilled, if RF generator has large internal 

resistance or if the generator is connected with a circuit through the impedance ,GZ  
which is very large in comparison with the impedance of a parallel circuit, i.e. 
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ZG>>G–1 (for example the role of GZ  can be played by large ohmic resistance 

or small capacitor). The RF voltage loss on circuit is equal to: 

( )
1

0

1 1
1 4 1 4

U IG I R I R
i R L i Qπξ χ ω πξ χ

−= = =
+ +

 

and in the absence of NMR signal ( )0χ =  

 0 .U IR=  

Since 4πξχQ<< 1, we can write  

( )0 01 4 ,U U i Q U Uχπξ χ= − = +   
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where ( )0 4 ;U iU Q i U iUχ χ χπξ χ χ ′′ ′′ ′′= − − = +  as a result the voltage change on a 

circuit at a resonance  

0 0 4U U U U U Qχ πξ χ′′ ′′∆ = − = − ⋅≈  

is proportional to imaginary part of complex susceptibility, i.e. absorption. In the Q - 

meter method the NMR signal appears in the form of very small modulation of the 

voltage 0U  existing also in the absence of the signal. 

 

L0 

C0 Zr Amplitude 

detector 

RF 

generator 

RF  

amplifier 

Synchronous 

detector 

audio-

frequency 

 

 Stabilized  

current supply 

XY-recorder 
X                         Y 

Magnetic field 

scanning unit 

sample 

N  S  

Рис.4  

Selective 

amplifier 

Fig. 4 
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2.2. Bridge detector 

 

In the bridge detection method the circuit voltage 0U  is compensated, 

summing with it, prior to amplification, the voltage 1,U  almost equal to it in 

amplitude and almost opposite in phase. In this case the amplified and detected 

voltage is equal to: 
 0 1 0 4 .V U U iU Qπξ χ= − − ⋅  

For stable operation of the device (block diagram of RF part is shown in Fig. 5) it is 

desirable to avoid the total compensation and to hold the requirement U0 – 

U1>>∆U. The difference ( )0 1U U−  can have any phase ϕ  relative to 0U . Writing 

( )0 1 0 exp ,U U U iα ϕ− =  where α – real quantity, we find: 

 

Fig. 5  

( ) ( )0
4exp 1 expQV U i i iπξ χα ϕ ϕ

α
 = − − = 
 

 

 ( ) ( ) ( )0
4 4exp 1 sin cos cos sin .Q QU i iπξ πξα ϕ χ ϕ χ ϕ χ ϕ χ ϕ

α α
 ′ ′′ ′ ′′= − + − − 
 
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Due to smallness of 4 Qπξ χ α  only the first two terms are essential in the curly 

brackets. At 0ϕ =  the amplitude V  in the first approximation depends only on χ′′  

(absorption signal), and at – 
2
πϕ =

 
only on χ′  (dispersion signal). At the 

intermediate values of ϕ  the incoming voltage from the bridge output on the high-

frequency amplifier contains a mixture of absorption and dispersion signals. 

 

2.3. Bloch method (Crossed-coil method) 

 

This system is similar in construction and operation to a bridge in which, 

however, the functions of creating and recording the high-frequency field are carried 

out by different coils. The field created by the transmitting coil equalizes the phases 

of the separate precessing nuclear moments; the receiver coil serves for measuring of 

the variable magnetic flux appearing as a result of precession of the net magnetization 

vector. 

If the axis of the transmitting coil coincides with axis x  of laboratory 

coordinate system, then the voltage U∆  induced by precessing magnetization in the 

receiver coil will be proportional to ydM dt . Since ( )( )1Im expyM H i tχ ω=  (see 

30)), then 

 ( ) ( )1 1sin cos cos sin .ydM dH t t H t t
dt dt

χ ω χ ω ω χ ω χ ω′ ′′ ′ ′′= − = +  

The amplitude of this voltage is proportional to ( )1 22 2 .χ χ′ ′′+  

If fields of coils are not strictly perpendicular, then the transmitting coil induces a 

voltage in the receiver coil: 

 ( )1 cos sin ,dV H t t
dt

ω ω ω∼ ∼  

that is summed with .U∆  If V>>∆U, then the voltage amplitude change on the 

receiver coil at resonance is equal to 

 .V U V ω χ′′+ ∆ − ∼  
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Thus, existence of leakage flux when using the crossed coils allows to observe not 

( )1 22 2 ,χ χ′ ′′+  but χ′′– pure absorption signal. From the last equation it follows that 

the voltage amplitude change at resonance has a sign which is determined by sign of 

( )Hω γ= −  or gyromagnetic ratio sign ;γ  as a result it is possible to find the relative 

signs of two nuclear moments Iγ h  and ,Iγ ′ ′h  by comparing their signals at one 

frequency, but in different magnetic fields. 

 

2.4. Autodyne detector (generator of weak oscillations) 

 

The operation principle of autodyne detector is as follows. The sample with 

nuclear spins is located in the coil of LC  circuit of the radio-frequency generator. The 

susceptibility change in the area of resonance causes the frequency and amplitude 

modulation of the generated high-frequency oscillations. Depending on whether the 

subsequent receiver reacts on the changes of frequency or amplitude, after detection 

the dispersion or absorption signal is obtained. In practice the autodyne detectors are 

used, as a rule, for recording of absorption signals. 

It is known that the parallel resonance circuit can be excited by connecting a 

negative conductance in parallel to it, i.e. a two-terminal network with a volt-ampere 

characteristic of the type: 
2 3

1 2 3 ...i G u G u G u= + + +  

The oscillations in a circuit arise only in case when the conductivity 1G  in the 

working point is negative (N-type volt-ampere characteristic). We call the working 

point the intersection point of the characteristics with axis 0.u =  Without loss of 

generality it is possible to consider an inflexion point of a curve as the working point 

( ),i i u=  i.e. to set 2 0.G =  The stationary oscillations in a circuit with conductivity G  

will be established under the requirement 1 1 0.G G G′+ = <  The amplitude of excited 

oscillations can be found from the graph, by determining the extreme points of the 

resultant volt-ampere characteristic from the requirement 0di du= : 
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3
1 3 .i G u G u′= +  

The position of these points is determined from the expression 

1
1

3
,

3
G

u
G

′
± = ±  

whence the oscillation amplitude is  

1
0 1

3

4
2 .

3
G

V u
G

′
= =  

The sensitivity Е of the autodyne detector is characterized by voltage change in the 

oscillating circuit at change of its conductivity: 

 0 0

1 3 0
E 2 1 .

3
dV dV
dG dG G V

= = = ⋅
′

 

Thus, the sensitivity increases at contraction of oscillation amplitude. 

The advantages of autodyne detectors are their simplicity and ease of resetting 

in a wide frequency band. Their basic deficiency – difficulty to obtain very weak 

radio-frequency fields 1,H  which are sometimes necessary to avoid the NMR signal 

saturation effect in the samples with long relaxation times. 

 

2.5. Double modulation 

 

Strong NMR signals (for example, from water protons) can be observed on the 

oscilloscope screen using one low-frequency modulation of magnetic field. Such 

scheme of observation is realized, for example, in magnetic inductometers Ш1–1 and 

Ш1–9. The noise power in this scheme, proportional to transmission bandwidth 

F∆ of a low-frequency amplifier, is rather high. For example, for observation of 

undistorted NMR lines at modulation frequency of 50 Hz the transmission bandwidth 

of low-frequency amplifier should be of the order of 103 Hz. For observation of weak 

signals it is necessary to reduce the noise power, i.e. to reduce the transmission band 

of low-frequency amplifier; in case of very weak signals the transmission bandwidth 
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should be less than 0.1 Hz. It is very difficult to create low-frequency amplifiers with 

such narrow transmission band and to stabilize the modulation frequency within a 

small part of this band. Therefore we will do the following. Together with slow 

change of magnetic field with the linear law (modulation 1) we will carry out fast and 

shallow (much less than NMR line width) modulation with frequency Ω  (modulation 

2). The resulting change of magnetic field is: 

sinMH at H t= + Ω  

( ( ), 2Ma const H H= < ∆ – modulation depth) leads to that the NMR signal is 

transferred on fixed frequency Ω , and its amplitude appears to be proportional to 

derivative of absorption ,d dHχ′′  and phases of frequency oscillation Ω  on 

different sides of a curve ( )Hχ′′  differ on 1800 (Fig. 6). The subsequent NMR signal 

amplification is carried out by the special selective amplifier attuned on modulation 

frequency Ω  and having a transmission band 2F π∆ = ∆Ω  of the order of several 

Hz. The selective amplifier is usually constructed as the negative feedback amplifier 

through the band-rejection filter.  
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The latter more often uses the double T-shaped RC-filter (Fig. 7) which passes all 

frequencies except the measured frequency (in our case except the modulation 

frequency Ω). As a result the negative feedback coupling operates on all frequencies 

except Ω, and in whole the device works as the resonance amplifier. Due to narrow 

transmission band of this amplifier the noise power on its output is essentially 

Fig. 6 
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reduced, and this leads, in turn, to effective increase of the signal-to-noise ratio. 

Further increase of the signal-to-noise ratio is obtained by means of synchronous 

detection which appears possible due to that the useful signal has a narrow frequency 

spectrum near the fixed frequency Ω. 

 

2.6. Lock-in detector 

 

In lock-in detector the output voltage of the selective amplifier 

( ) ( )0sin ,u t u t e t= Ω +  

R  R  

C  C  

2R  2C  

)a  

UK  

)b  

1 RCΩ =  frequency
 

Fig.7. Scheme ( ) and frequency characteristic ( )
of double T shaped RC filter 

а b
− −
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represents a mixture of the useful signal and noise ( ),e t  and is multiplied on the 

periodic function ( )F t  with the period 2π
Ω

 (reference voltage) and then is integrated 

over the time 2τ>>π/∆Ω; here ∆Ω  – frequency spectrum width of signal ( ),u t  
limited by pass bandwidth of the selective amplifier. 

Let ( ) sin .F t t= Ω  Then on the output of the lock-in detector we have: 

 ( ) ( ) ( ) ( )0

0

sin 2sin 1 .
2 2

u tu t t dt U E E
t

τ τ
τ τ τ

 Ω
Ω = + = − + Ω 

∫  

Since Ωτ >> ∆Ωτ >> 1 the useful signal is equal to 0 2.u τ  The second term, due to 

noise, is a random quantity; therefore it is possible to speak only about the mean-

square value ( )2 .E τ  The calculation results in expression: 

 ( ) ( )2 ,
2

E Jττ = Ω  

where ( )J Ω – spectral density of noise power at frequency Ω . This means that the 

noise passes through the synchronous detector as through the filter with the 

equivalent transmission band 2 .τ  The signal-to-noise ratio at the output of the 

synchronous detector is: 

 ( )
( ) ( )

1 2

01 22 2
U

u
JE

τ τ

τ

 
=  Ω 

 

and it appears to be proportional to 1 2τ , and, hence, can be made larger by increasing 

the integration time. 

Fig. 8 shows the scheme of elementary lock-in detector with the field-effect 

(unipolar) transistor with two isolated gates. The integration time in the given scheme 

is determined by the time constant of a circuit 2 ;RCτ π= ⋅  by increasing R and C it is 

possible to achieve the equivalent transmission band of the synchronous detector of 

the order of few percent of hertz. 
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Lock-in detector is also called a phase detector since a voltage on its output depends 

on phases of a signal and a reference voltage ratio. In fact, if the reference voltage is 

phase-shifted relative to signal on angle ϕ , then on the lock-in detector output we 

have:  

 ( ) ( )0
0

, sin sinU u t t dt
τ

τ ϕ ϕ= Ω ⋅ Ω + =∫  

 0 sin 2 cos2cos 1 sin
2 2 2

u τ τ τϕ ϕ
τ τ

 Ω Ω  = − −  Ω Ω  
 

or, since Ωτ >> ∆Ωτ >> 1, 

 ( ) 0, cos .
2

u
U

τ
τ ϕ ϕ=  

A most simple way of input signal ( )u t  multiplication with reference voltage 

( )F t  is the use of switch (for example, a diode switch). Then it is possible to present 

a reference voltage in the following form: 

( ) 1, 2 0,
1, 0 2, 2 .

F t T t
t T T π

= − − < <
+ + = Ω< <

 

Expansion of this function in a Fourier series has the following form: 

RC 
R 

C 

+UC 

Output 

Fig. 8 

Input F(t) 

Input u(t) field-effect 

transistor 
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 ( ) ( )
0

sin 2 14 .
2 1n

n t
F t

nπ

∞

=

+ Ω
=

+∑  

If ∆Ω << Ω then the noise spectrum on the synchronous detector output has no 

components with frequencies 3Ω, 5Ω, etc., therefore the terms of F(t) with n ≠0 do 

not give the contribution to the resulting signal. 

 

3. Description of the experimental facility 

 

3.1. Purpose of the spectrometer and its technical characteristics 

 

The given laboratory work uses autodyne type broad line continious wave 

spectrometer intended for recording of NMR spectra in solids. The choice of nuclei 

for resonance observation is determined by magnetic field source of the spectrometer 

(permanent magnet) and practically limited to 19F and 1H isotopes. Recording of 

signals and postprocessing of spectra is performed by means of the microcontroller 

and tcomputer, respectively. 

The spectrometer technical characteristics are as follows: 

Operating frequencies of the autodyne generator … … … … ….5 – 40 MHz 

Magnetic field … … … … … … … … … … … … … … … … … 2500 Oe 

Modulation frequency … … … … … … … … … … …    … … … …. 373 Hz 

Peak amplitude of magnetic field modulation … … … … … … … …. 50 Oe 

Band of magnetic field scan … … … … … ……………… … … … 100 Oe 

Voltage amplitude in the sample coil ... ... ... ... .. … … …  … …. 50 – 500 mV 

High frequency amplification gain... … … … … … … … … … … … 30 dB 

LF-path amplification gain... … … … … … … … … … … … … … 100 dB 

 

3.2. Block diagram of facility and principle of operation  

 

The spectrometer block diagram is shown in Fig. 9. The inductance coil with 
the sample is located in a bore of permanent magnet. For slow change of magnetic 
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field the coils for magnetic biasing shown by thick lines on the block diagram are 
used. The modulation coils are located in the immediate proximity of the sample. 
The autodyne detector includes the diode amplitude detector of the high-frequency 
oscillations of the generator, which is applied to the input of the selective amplifier of 
the recording system, that amplifies the voltage with a frequency of 373 Hz. The 
amplified low-frequency voltage is applied to the input of the lock-in detector. The 
output voltage of audio-signal generator which simultaneously is applied to the 
modulation coils is used as a reference voltage of the lock-in detector. 

The output of recording system is connected to input of analog-to-digital 
converter (ADC) of microcontroller ATMEGA 8535. Slow magnetic field scanning is 
carried out by the same microcontroller with the help of the digital-to-analog 
converter (DAC). Thus, for each measured point of NMR spectrum the 

Fig. 9. Block diagram of spectrometer  
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microcontroller sets the magnetic field intensity and measures the value of derivative 
of absorption signal. Then this data is transmitted to the computer and mapped on its 
screen in the form of NMR spectrum. 

The autodyne detector is assembled according to the modified Pound-Knight 
scheme with two FET transistors KT312 (see Fig. 10). The first stage is common 
drain amplifier, second - common gate amplifier. The tank circuit is connected to the 

first transistor gate (at the left) through a RC-circuit representing the high-pass filter, 
suppressing penetration of low-frequency voltage into the generator induced on the 

Fig. 10. Basic circuit of autodyne generator 
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coil because of magnetic field modulation. The oscillating mode is regulated by 
means of the variable resistor connected to the circuit of the second FET source. The 
current compensating the losses in the tank circuit, is applied to it through the 
capacitor (positive feed-back). The tank circuit is connected with high impedance 
input of the composite repeater (with field-effect transistor KP312A and bipolar 
transistor – КТ 399А). Further, the signal is applied to the amplitude detector for the 
purpose of the subsequent lock-in detection, to frequency meter for the frequency 
control, and also to millivoltmeter input – indicator of oscillation level. 

After amplitude detection the signal is applied to the recording device (see Fig. 11). 
Amplified by the selective amplifier, having the maximum amplification at the 
modulation frequency (373 Hz), it enters the compensation circuit of the spurious 
signal inevitably induced on the coil with the sample due to modulation of the 
magnetic field. The phase and amplitude of compensating voltage are selected so that 
in the absence of NMR signal there will be no voltage with frequency of 373 Hz at 
the circuit output. The compensation control is performed by Lissajous figures on the 

Selective 
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Fig. 11. Block diagram of the recording device 
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oscilloscope screen, on which input X the reference voltage from the audio-frequency 
generator and on input Y – the output signal of the compensation circuit are applied. 
Then the basic selective amplifier is followed. The synchronous detector multiplies 
the amplified voltage together with reference voltage with the subsequent integration. 
The reference voltage phase is attuned so to obtain the maximum signal. The terminal 
stage of the recording scheme corresponds to direct-current amplifier which output is 
connected with ADC input of the microcontroller. 

The principles of autodyne detection, double modulation and lock-in are 

described in detail in sections 2.4, 2.5, and 2.6. 

 

4. Recording and processing of NMR spectra 

 

Recording and processing of NMR spectra is carried out by the computer with 

the relevant software. 

 

4.1. Program for NMR spectra recording 

 

The window for recording program of NMR spectra is shown in Fig. 12. 

The window contains the following elements: 

1. Graphic information window; 

2. “Start” – button for starting the magnetic field sweep; 

3. “Stop” – button for stopping the magnetic field sweep; 

4. “Save” – button for saving the measured spectrum; 

5. “Freq” – window for input of NMR frequency; 

6. “Quick” – switch button between the fast (for precheck) and slow magnetic 

field sweeps; 

7. “Pause” – button for temporary stopping the field sweep; 

8. “X” – current value of magnetic field in DAC units; 

9. “Y ”– current value of NMR signal derivative; 

10. “Dev”– window where the value of area of the NMR signal derivative is 

shown (for tuned spectrometer this value should be close to zero). 
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Procedure for operation with the software. 

1. Tune the output of direct-current amplifier (in the recording device) on zero 

bias: 

a) start magnetic field sweep and immediately stop it by button "Pause"; 

b) by rotating the bias controller of a direct-current amplifier achieve the value 

close to zero in window “Y”; 

c) start field sweep by button "Pause" and immediately interrupt the record. 

2. Start magnetic field sweep. 

 

 

 

At the moment of magnetic field passage through the resonance conditions input into 

the window “Freq” the NMR frequency value measured by the frequency counter. 

3. Stop recording and save the recorded spectrum into the folder [spectra]. 

 

Fig. 12. Program window for NMR spectra recording  
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4.2. The program for calculation of magnetic field values  

 

It is very difficult to relate the voltage value at DAC output of the 

microcontroller and the magnetic field value in magnet bore since the magnetic field 

is affected by many parameters (for example, temperature of the magnet). Therefore, 

in order to determine the value of magnetic field, the possibility to record the NMR 

spectra at two slightly different frequencies is used.  

Assume that we have recorded the NMR spectra at frequencies f1 and f2. After 

recording, it is possible to determine the positions of NMR lines for these two 

spectra, corresponding to two values of magnetic field intensity n1 and n2 which are 

given in some units (percent of scan value), not yet related with units of magnetic 

field intensity. On the other hand, knowing a gyromagnetic ratio γ, it is possible to 

determine the values of magnetic fields Н1 and Н2, corresponding to centers of two 

NMR spectra recorded at different frequencies: /i iH f γ= . 

Now we can compare Н1 and Н2 with п1 and п2 and calculate in the linear 

magnetic field scan approach the value of magnetic intensity Н for each point of the 

NMR spectrum with value п: 

( )2 1
1 1

2 1
.H HH H n n

n n
−

= + −
−

 

These calculations are carried out by the software for calculation of magnetic field 

values and its window is shown in Fig. 13. 

Procedure for operation with the software. 

1. Input, if it is necessary, the value of gyromagnetic ratio for nuclei of the 

corresponding ion into the window “gamma”. 

2. Open with the button "Open" the main file with the data of NMR spectrum 

measured at frequency f1. The spectrum will appear in the left part of the graph 

window. If it is necessary input the NMR frequency into the window “f1”. 
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3. Open with a button "OpenFreq" file with the data of NMR spectrum 
measured at frequency f2. The spectrum will appear in the right part of graph window. 
If it is necessary, input the NMR frequency into the window “f2”. 

4. Set with the computer mouse the red dashed lines on centers of NMR lines 
and press the button “Calculate H”. The abscissa axis of the main spectrum (left 
window) will be recalculated in magnetic field intensity values, and the spectrum 
saved into the same file with the new values of abscissa axis. 

Let the other NMR spectra have been recorded together with that mentioned in 

different conditions (for example, in different magnetic field orientation relative the 
crystal axes) at the same frequency f1. Then by opening the corresponding file in the 
left part of graph window we will obtain a spectrum which abscissa axis will be 
automatically recalculated in magnetic field intensity units, and the program will 
automatically save the spectrum with new values of abscissa axis. 

 

Fig. 13. Program window for calculation of magnetic field values 
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4.3. Program for extraction of the part of spectrum with the NMR line and line width 

evaluation  

 
The parts of a spectrum that are located far away from the NMR line center do 

not contain any information about the line shape. However these parts as well as the 
whole spectrum contain the noise, which at evaluation of the second and the fourth 
moments of lines increase the error in estimations of the values of the moments. 
Therefore, to increase the measurement accuracy of the values of the moments it is 
necessary to use only the central part of a spectrum containing the NMR line, and the 
side parts of spectrum that contain only a noise should be removed. For this purpose 
the program for extraction of part of spectrum with NMR line and line width 
evaluation (see Fig. 14) is used. 

Fig. 14. Window of the program for extraction of part of spectrum 

with NMR absorption line and line width evaluation 
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width. 
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Procedure for operation with the software. 

1. Open a handled spectrum and set the green line on center of the NMR line 
derivative. 

2. Set the red lines on extremum points of the NMR line derivative. The dark 
blue lines will simultaneously move and show the selected part of spectrum. 

3. Cut the unnecessary parts of spectrum by button "Cut". 
4. Save the obtained spectrum (button "Save"). 
5. Set again the red lines on extremum points and record the maximum value 

of the NMR line width. 
 

Task 
 

1. Familiarize yourself with principles of NMR theory in solids and methods of 
NMR signals detection (sections 1 and 2). 

2. Study the structural and electrical schematic diagram of NMR spectrometer 
(section 3). 

3. Record 19F NMR lines in CaF2 crystal at orientations of the static magnetic 
field along the crystallographic directions [100], [110] and [111] (in other notations 
С4, С2 and С3, respectively). 

4. Calculate the second and the fourth moments of the experimental curves; 
compare the obtained moments with the theoretical values (see equations (68), (71) 
and the Appendix); calculate the ratio M 4/M2

2. 
 

Appendix 
 

A1. Data for CaF2 crystal 

 

Calcium fluoride CaF2 belongs to space group 5
hO  and has the lattice constant 

a=5.46Å. Its structure can be viewed as a simple series of cubes formed by F− ions 

with Ca2+ ions, being in the center of the every second cube. The crystal contains 
only one sort of 19F nuclei with nonzero spin. The quadrupole effects are absent since 
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the nuclear 19F spin is 1/2. The nuclei have large magnetic moments 

( )2.63 , / 2 4007 Hz/OeNµ µ γ π= + =  and form a simple cubic lattice. The theoretical 

values of 4-th root of the fourth moment (in oersteds) for various directions of 
magnetic field relative the crystallographic axes are given below. 

    

4
4M     

 

A2. Evaluation of the moments from experimental curves 

 

The calculation procedure of the moments from the experimental curves 

d f H
dH

ωψ
γ

 
 
 

= −  is reduced in essence to a double numerical integration and is 

explained by equations and Fig. 14 shown below. 
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For correct approximation of absorption curve the interval δ should be small enough: 

the value of N should be of the order of 15 … 30. 

 

 

Fig. 15 
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PART 2 

PULSED NUCLEAR MAGNETIC RESONANCE IN SOLIDS 

 

1. Classical description of pulsed nuclear magnetic resonance 

 

1.1. Motion of noninteracting spins 

 

The mechanical (J ) and magnetic (μ ) moments of nuclei are related through 

the following relation γ=μ J , where γ –  scalar value called the gyromagnetic ratio. 

Interaction of the magnetic moment with a static magnetic field 0H  causes the 

mechanical moment precession. The 

equation of motion for magnetic 

moment can be written as follows: 

0d dt = ×J μ H ,   0d dt γ= ×μ μ H  

Or, finally, 0d dt = ×μ ω μ . 

The angular velocity 0 0γ= −ω H  

(precession frequency 0 0 0Hω γ= ≡ω ) 

is called a Larmor frequency. 

If the magnetic field is applied along 

the axis z the precession will occur as it 

is shown in Fig. 1, in the direction of 

arrow, with a Larmor frequency; the 

magnetic moment delineates a cone. 

The given equation of motion is written in the fixed coordinate system which is also 

called a laboratory frame (LF). 
 

 

 

Fig. 1. Precession of moment in the magnetic field 
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1.2. Rotating frame (RF) 

 

When considering a magnetic resonance it is convenient to use rotating frame 

The latter has some angular velocity relative the laboratory frame. It is obvious that if 

RCS rotates with the Larmor precession velocity the magnetic moment in this 

coordinate system will be fixed. We will show this. Consider some vector function of 

time ( ) x y zt F F F= + +F i j k , where i, j, k – the unit vectors directed along the 

Cartesian coordinates, rotating with angular velocity Ω. Then for these vectors the 

following equations are valid: 

,
,
.

d dt
d dt
d dt

= ×
= ×
= ×

i Ω i
j Ω j
k Ω k

 

The total time derivative of function F is equal to: 

( ).

yx z
x y z

yx z
x y z

dFdFd dF d d dF F F
dt dt dt dt dt dt dt

dFdF dF F F F
dt dt dt

= + + + + + =

= + + + × + +

F i j ki j k

i j k Ω i j k
 

The first three terms represent the derivative of function in RF. We will designate it 

as 
t

δ
δ
F . Then d

t dt
δ
δ

= − ×
F F Ω F . 

Thus, the equation of motion for magnetic moment in a coordinate system 

rotating with frequencyω  may be written as 

( )0 0
d
dt

γ γ= × − × = × +
μ μ H ω μ μ H ω   

(hereinafter we will use a usual designation for derivative of vector quantity, 

stipulating thus what coordinate system is used). Really, if 0 0γ= − ≡ω H ω , then 

0d
dt

=
μ , and the precession is absent. It is possible to imagine that in RF the 

precession is caused by the effective magnetic field, eff
d
dt

γ= ×
μ μ H , where 

0 /eff γ= +H H ω , and absence of precession is a consequence of zero effective field. 



 57 

In macroscopical object the spins precess with arbitrary phase, therefore the total 

moment i= ∑M μ  is directed parallel to magnetic field 0H  as shown in Fig. 2 and 

the equation for its motion in RF has the same form as for the individual moment – 

spin: 

.eff
d
dt

γ= ×
M M H  

Suppose that except a field 0 0H=H k  there is a transverse field 1 1H=H i  

directed along the x -axis of RF. This means that in LF it rotates with a frequency ω  

in direction of precession. In this case the effective field ( )0 1eff H Hω γ= − +H k i , 

around which there is a magnetization precession (Fig. 3), is not zero even in the case 

when 0ω ω= , and, hence, it is possible to create transverse magnetization, affecting 

by rather weak rotating magnetic field with a frequency close to the Larmor 

frequency. This is called a magnetic resonance. In practice one inductance coil is 

usually used for observation of nuclear magnetic resonance (NMR). At alternating 

current flow through it there causes a linearly polarized alternating magnetic field 

12 cosH tω  directed along the coil axis. 

Fig. 2. Magnetic moments in the sample in equilibrium state.  

Transverse magnetization is absent. 

 

Μ 

Η0 µi 
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Nevertheless, all reasons given above remain valid, as it is possible to present it in the 

form of sum of two rotating fields with value H1 but with frequency ω in opposite 

directions, as shown in Fig. 4.  

The component which rotates in direction opposite to the precession direction (on the 

right in Fig. 4) may be neglected. Really, if 0ω ω≈  and 1 0H H<<  then the effective 

field in this case is ( )0 1 02eff H H Hω γ= + + ≈H k i k , and this component would not 

affect the magnetization. 

 

1.3. Free induction decay (FID) 

 

In pulsed NMR methods alternating (radio-frequency – RF) field is applied for 

short period of time – in the form of a pulse. If we consider the case of exact 

resonance 0ω ω=  then the effective field 1eff H=H i , and the magnetization rotates 

Fig. 3. Magnetization precession in RCS 

in the presence of variable field. 

x y 

M 

H1 

Heff 

z 

0 

   H0 - 

   

H

 
RF 

Fig. 4. Decomposition of linearly 

polarized field on two rotating fields. 

y 

x 

2H1cosωt 

0 

ωt −ω t 

H1 
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with angular velocity 1 1Hω γ=  around the axis x. To obtain the maximum transverse 

magnetization a rotation by / 2π  angle is required. The pulse, causing such an effect, 

is called / 2π - pulse. Its duration τ  should satisfy the requirement 1 / 2ω τ π= . As a 

result the magnetization appears directed along the y -axis of RF, as shown in Fig. 5. 

The magnetization static in RF rotates relative the inductance coil with Larmor 

frequency and creates alternating 

magnetic field. As a result an induction 

electromotive force (EMF) on the coil 

turns is induced that is proportional to 

0 Mω  , which can be registered by radio 

engineering methods. The alternating 

voltage on the coil, created due to nuclear 

induction, was called free induction decay 

– FID. This voltage gradually damps due 

to not exactly equal frequencies of 

precession of different groups of spins 

that can be caused by both heterogeneity 

of a static magnetic field and the local 

fields, which are created by spins (spin-spin interaction). This process was called the 

transverse relaxation. Besides, due to spin-lattice (longitudinal) relaxation the spin-

system is returned to equilibrium state in which there is only a longitudinal 

magnetization. It is generally accepted to designate these time constants, 

characterizing these two processes, as Т2 and Т1 , respectively. 

 

 

1.4. Spin echo 

 

Fig. 5. Creation of transverse 

magnetization with the help of  

π /2-pulse. 

z 

x y 

0 
Η1 

M 
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The classical vector model allows us to explain the spin echo phenomenon. Its 

essence is that if we apply one more pulse after the time period τ ( 2Tτ > ) after π/2 

pulse, twice longer in duration compared with the first one, then at the time 2τ the 

broken transverse magnetization will appear again (see Fig. 6). Supposing that the 

origin of transverse magnetization decay is the dispersion of Larmor frequencies of 

different groups of spins – spin packets, it is possible to explain the mechanism of 

echo occurrence by considering the behavior of magnetizations of the two spin 

packets with Larmor frequencies 1,2 0ω ω ω= ± ∆ . For the time τ the magnetization 

will deviate from the y -axis of RF on angles ( ωτ±∆  Fig. 7a). Then the second pulse 

will turn both magnetizations on angle π around the axis x (Fig. 7b), the precession 

direction thus, naturally, will not change. As a result both magnetizations will 

converge to the axis –y with the same angular velocity as that deviated from the y 

axis. In time τ after the second pulse they will merge. Since this reasoning is valid for 

any spin packet, then at the time moment 2τ the transverse magnetization will be 

completely recovered. 

My π/2 π 

0 
0 

2τ τ t 

Fig. 6. Spin echo. 
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Рис.7  Положение намагниченностей двух спиновых пакетов с
ларморовскими частотами                          перед (a) и после (б) π-импульса

x

y y

x

1

2

1

2

0 0

ωτ

− ωτ

2

а) б)

1,2 0ω ω ω= ± ∆

 

 

2. Quantum-mechanical treatment of pulsed nuclear magnetic resonance 

 

2.1. Equation of motion 

 

Interaction of spin with a magnetic field is described by the energy operator, 

the Hamiltonian γ= − HIhH , where I – spin operator. Proceeding from the 

Schroedinger equation it is possible to obtain the equation of motion of any 

observable value (including magnetic moment). Suppose that the wave functions Ψ 

and Φ satisfy the Schrodinger equation: 

i t
∂Ψ

− = Ψ
∂

h H ;  
i t

∂Φ
− = Φ

∂
h H ;. 

Then for any operator F  it is possible to write the equation 

x x 

y y 

Fig. 7. Values of magnetizations of two spin packets with Larmor frequencies 

ω1,2 =ω0±∆ω before (a) and after (b) π pulse. 
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( ) ( )

*
* *

* * * ,

d d d d
dt t t

i i id d d

τ τ τ

τ τ τ

∂Ψ ∂Φ
Ψ Φ = Φ + Ψ =

∂ ∂

= Ψ Φ − Ψ Φ = Ψ − Φ

∫ ∫ ∫

∫ ∫ ∫

F F F

F F F F
h h h

H H H H
 

or [ ],d i
dt

=
F F

h
H  since this is true for any matrix elements of F . At derivation we 

used the relation ( )* *Ψ = ΨH H  valid for Hermitian operators. 

It is easy to be convinced that the obtained equation is equivalent to classical 

one if we choose the nuclear spin as operator, and the Hamiltonian describes the 

Zeeman interaction: 

x y zI I I= + +F i j k  , ( )x x y y z zH I H I H Iγ= − + +hH . 

 

2.2. Statistical ensemble of noninteracting spins. 

 

Is it possible to describe the ensemble comprised of N  identical noninteracting 

spins in a magnetic field by means of the wave function of one spin N ? We will try to 

do it supposing that the spin is equal to 1 2. We will write the wave function in the 

form of superposition of "pure" wave functions: 1 2a aψ ξ η= + , 
2 2

1 2 1a a+ =  , ξ  

corresponds to the spin aligned along a field, and η  – backwards. Then the 

components of macroscopic magnetization of ensemble are determined by the 

following expressions: 

1 2 2 1

1 2 2 1

1 ,
2

,
2

x
x

y
y

M N I N a a a a

M iN I N a a a a

γ

γ

∗ ∗

∗ ∗

 = = + 

 = = − 

h

h

 

2 2
1 2

1 .
2

z
z

M N I N a a
γ

 = = −  h
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The last equality seems obvious if we consider that 
2

1a  and 
2

2a  are the relative 

densities of level populations. However, from the first two expressions it follows that 

the transverse magnetization is equal to zero only if 1 0a =  or 2 0a = , that is in case 

of the full polarization of spins, that does not represent the facts. So, the assumption 
that knowledge of one-particle wave function for the description of ensemble of spins 
appeared to be untenable. To determine the transverse magnetization the ensemble 

averages of products of coefficients: * *
1 2 1 2

1

1 N
i i

i
a a a a

N
=

=
∑  shall be considered. For the 

most complete description of spin system including the presence of interaction, 
knowledge of all such products is required. The latter are the elements of density 

matrix ρ . The total number of spin system states is equal to ( )2 1 NI + , hence, the 

size of density matrix is ( ) ( )2 1 2 1N NI I+ × +  and its elements are equal to 

*
, mm m mm m a aρ ρ′ ′′= = . 

If the density matrix is known it is possible to determine the average value of 

any observable quantity: { }Q Sp Qρ= . The time dependence of density matrix is 

described by the equation 

[ ],d
i dt

ρ ρ⋅ = −
h H . 

In case if the Hamiltonian is time independent the solution of the equation is  

( ) ( )0
i ti t

t e eρ ρ
−

= h h
HH

. 

It is most simple to write the equilibrium density matrix in proper representation of 

the Hamiltonian H . If we designate the energy values as iE i i= H , then the 

nondiagonal elements of density matrix are equal to zero, and the diagonal elements 

( )
( )2 1

/ /
0

1

N

i i
I

E kT E kT
ii i

e eρ
+

− −

=
= ∑  are equal to energy level populations according to 

the Boltzmann statistics. 
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2.3. Free induction decay and spin echo 

 

The density matrix formalism allows to explain a free induction decay and spin 

echo phenomena. We will write the equilibrium density matrix for system of N  spins 

I : 0
kTeρ ∝ H , where H  – main Hamiltonian that describes the interaction of spins 

with the magnetic field, z zH Iγ= − hH , 
( )2 1

1

N
I

i
z z

i
I I

+

=
= ∑ . In the high-temperature 

approach ( kT<<H ) it is possible to expand the density matrix into a series and 

constrain with the first term of expansion kTe kT− ≅ −1H H , where 1  – unit matrix 

(operator). Neglecting the latter, we will finally write 0 zIρ ∝ . 

The effect of variable magnetic field on a density matrix and also its evolution 

are described by means of exponential operators. One can show that the operator 

xi Ie θ−  turns the spin operators on angle θ  around the axis x , i.e. after the effect of 

2π  pulse 2 2x xi I i I
z ye I e I

π π−
= . 

In the event when the decay of transverse magnetization occurs due to a dipole-dipole 

interaction of nuclear spins, further evolution of density matrix goes on according to 

the following law: 

( )
i t i t

yt e I eρ
′ ′−

= h h
H H

, 

where ′H – secular part of the dipole-dipole interaction. (About the origins of 

truncation of the Hamiltonian of dipole interaction see the description of laboratory 

work “Continuous nuclear magnetic resonance in solids”). Thus, the transverse 

magnetization will depend on time as 

{ } 1( ) ( )
i t i t

y y y yM t Sp I Sp e I e I G tρ
′ ′− 

∝ = = 
 

h h
H H

. 
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We note that the latter expression is written in RF rotating with frequency 0 zHω γ=  

and describes the free induction decay (FID) – a signal of pulsed NMR related to a 

CW signal ( )f ω  by the Fourier-transform: 

( ) 1( )cosf G t t dtω ω
−

+∞

∞
= ∫ . 

In the case when the magnetic field heterogeneity is the origin of NMR line 

broadening it is possible to demonstrate the occurrence mechanism of spin echo. The 

density matrix after a 2π  pulse is also equal to yI . The Hamiltonian of Zeeman 

interaction of spins in a rotating coordinate system can be written as 
i
zi Iω= − ∆∑hH , where 0i iHω γ ω∆ = − , and iH  – magnetic field in the location of 

i th spin. Then, at the time t τ= , 

( )
i iz zi iI I

ye I eτ ω τ ωρ τ ∆ − ∆∑ ∑= . 

If at this time a π  pulse is applied, then after it 

( ) ( )i i
i ii iz zz zx xi iI II Ii I i I

y ye e I e e e I eτ ω τ ωτ ω τ ωπ πρ τ − ∆ − ∆∆ ∆−
+

∑ ∑∑ ∑= = − . 

Further change of density matrix goes on as 

( ) ( )i i i iz z zzi i i it I I I t I
yt e e I e eω τ ω τ ω ωρ τ ∆ − ∆ ∆ − ∆′ ′∑ ∑ ∑ ∑′+ = − . 

It is clear that when t τ′ =  (at the time 2t τ= ), then ( )2 yIρ τ = − . This means that 

transverse magnetization recovered, but has changed its sign as it follows also from 

the classical model. 
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3. Nuclear spin-lattice relaxation 

 

At low temperatures (and often at room temperature also) the observable 

relaxation times are much shorter compared with that might be expected. The only 

way to explain a relaxation is the assumption that even the purest crystals contain the 

paramagnetic impurities. The nuclei relax by interacting with their electronic spins 

which in turn relax into a lattice following the one of the mechanisms considered 

previously.  
 

 

3.1. Random field model 

 

If the diamagnetic ion with the paramagnetic nucleus is located near the 

paramagnetic ion then there is an interaction between them which can be generally 

written as: 

ˆ
S IH a= ⋅ ⋅S I% . 

If the ion and nucleus are located sufficiently far from each other so the density 

of electronic wave function on the nucleus is equal to zero, then the electron – 

nucleus interaction is the pure dipole interaction (interaction of two dipoles): 

2

3 2
( ) ( )

3 i i j j i jIS
i j i j

i j
a

r r
γ γ  ⋅ ⋅ ⋅

 = −
 
 

I r S r
I S

h
. 

The transitions between the nucleus levels, i.e. a nucleus relaxation, can be 

caused by the magnetic field fluctuations created by the electronic spin on a nucleus. 

These fluctuations can arise due to change of ( )a a t=% % , for example as a result of 

electron – nucleus distance change (relaxation of the 1st type), or due to change of 

vector of a spin with time ( )t=S S , for example due to spin orientation S change with 

time due to electronic relaxation. 
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Anyway it is possible to present the electron-nuclear interaction as follows: 

ˆ , where ( )e e eIS IH tγ= − ⋅ ⋅ =H I H Hh  - magnetic field created by the electronic 

spin on a nucleus. 

The spectral density of the fluctuating field created by the electronic spin on a 

nucleus is: 

( ) ( ) ( ) exp( )e eJ H t H t i dω τ ωτ τ
∞

−∞
= < ⋅ − > −∫ , 

where ( ) ( )e eH t H t τ⋅ −  – correlation function of fluctuations, <…> – average at the 

given temperature. 

If we write ĤSI in a coordinate system where the axis z || H0 (external field), 

introduce the angles Θ and ϕ setting the vector r connecting a nucleus and an 

electron, then we will obtain: 

where 

ˆ ˆˆ ˆ ˆ ˆ ˆ ,

ˆ ˆˆ~ ; ~ ( ); ~ ( );
ˆ ˆ ˆ~ ( ); ~ ; ~ .

S I

z z z z

z z

H A B C D E F

A S I B S I S I C S I S I

D S I S I E S I F S I
+ − − + + +

− − + + − −

= + + + + +

+ +

+

 

We will assume that the distance between the nucleus and the electron is fixed, 

and the fluctuating field with the Larmor frequency of nuclei arises due to fast 

electronic relaxation. If the concentration of paramagnetic centers is small, then the 

time of transverse relaxation of electronic spins is large ( 21 e elT ω≈ ∆  – ESR line 

width, or to be more precise, its homogeneous part) and then the fluctuating fields 

having some spectral density at NMR frequency are created by relaxation of 

longitudinal magnetization of electronic spins, i.e. Sz, and the time of spin-lattice 

relaxation of electrons 1eT  serves as the correlation time. In the Hamiltonian of 

dipole-dipole interaction we are interested in the terms containing operators which 

can cause spin flip of nucleus, i.e. the terms, Ĉ  and D̂ . 

2 3

*

3ˆ sin cos ( ),
2

ˆˆ .

i
z zI SC r e S I S I

D C

ϕγ γ −
+ += − ⋅ Θ ⋅ Θ ⋅ +

=

h
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Here Θ – angle between the magnetic field direction and a radius vector connecting 

the nucleus and the electron. In both terms the second components are not necessary 
to us since they cannot cause nuclear transitions. 

The calculations show that 

( ) ( ) ( )

( ) ( ) ( )

2 2

1

2 2 2 6 2 2

1 exp

9 sin cos exp ;
2

e eI I
n

z zI IS

H t H t i d
T

r S S i d

γ τ ω τ τ

γ γ τ ω τ τ

∞

−∞
∞

−

−∞

= < ⋅ − > − =

= ⋅ Θ ⋅ Θ < 0 > −

∫

∫

h

h
 

( ) ( ) ( )
1

0 1 exp ;z z
e

S S S S
T
τ

τ
 1

< > = + ⋅ −  3  
 

( ) ( )
1 1

1 1 1
2 2

00 1 1 1
1

Re exp exp 2Re exp exp

2 2 212Re Re Re ;1 1 1 1
x

I I
e e

x e e e

I Ie e I eI
e

i d i d
T T

T T T
e dx ei T i T TiT

τ τ
ω τ τ ω τ τ

ω ω ωω
−

∞ ∞

−∞ −∞

∞∞
−

   
− ⋅ − = − ⋅ − =      

   

    = ⋅ = − ⋅ = − =    + + ++    

∫ ∫

∫

 

2 2 2 6 2 2 1
2 2

1 1

1 sin cos ( 1) .
1

e
IS

n I e

T
r S S

T T
γ γ

ω
−= ⋅ Θ ⋅ Θ ⋅ + ⋅

+
h  

More often the condition 1I eTω  > 1 is satisfied, therefore 1
2 2 2

1 1

1
1

e

I Ie e

T
T Tω ω

=
+

. 

Then, if we omit sin2Θ⋅cos2Θ, i.e. the orientation dependence of 1nT , it is possible to 

write: 
22 2 2 2

2
6 2 2 2

1 1 1 0 10

( 1)1 1 1 1S locI I
loc

n e e eI I

HS S
H

T T T H Tr H
γ γ γ

ω γ

 ⋅ +
= ⋅ ⋅ = ⋅ ⋅ = ⋅  ⋅  

h
, 

where Hloc – a local field created by the electron spin on a nucleus. 

1

1 ~ ct h
2

e

eT kT
ω 

 
 

h  for direct processes; at ( )0 ct h ... 1T → → , i.e. the obtained result 

states that at low temperatures the nuclear relaxation rate via the paramagnetic 

impurities tends to a constant. The experiment shows that it is not the case: at 
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temperature lowering the nuclear relaxation rate decreases, approaching zero at Т→0. 

This results from the fact that at low temperatures the electronic spins are essentially 

polarized. The account of polarization (relative difference of population of electronic 

energy levels) gives the additional factor in the equation for nuclear relaxation: 

2 2 2 6 2 2 21
02 2

1 1

1 3 sin cos ( 1) (1 )
1

e
I S

nn e

T
r S S P

T T
γ γ

ω
−= ⋅ Θ ⋅ Θ ⋅ + ⋅ ⋅ −

+
h , 

where ( )0 0th 2P kTω= h . 

 

3.2. Nuclear spin diffusion effect on nuclear relaxation via paramagnetic centers 

 

Consider a chain of nuclei (I = 1/2) located at a distance a apart from each 

other (Fig. 8). We introduce p+ – the probability that the spin is aligned "upwards", p- 

– the probability that the spin is aligned "downwards"; then p+ + p- = 1, p+ – p- = p – 

polarization. 

The general problem is to find how polarization in this system changes and 

how the excitation propagates. 

The dipole-dipole interaction can induce the 

simultaneous flips of the two neighboring spins due to the 

term i j i jB I I I I+ − − +∼ + , at that the Zeeman energy of 

the spin system is conserved (if the external field is much 

larger than the local field). How to find the probability of these mutual flips? 

There is a local field 2
3~ (3cos 1) zlocH I

r
γ

Θ −
h  on the given nuclear spin 

created by the neighbor. The probability of flip for the given spin in this local field is 

2 2( ) | 1| | |
2 I IlocW H m I mπ γ ±= < ± > . But there is not only one neighbor at the given 

nucleus, every spin creates its local field which, besides, by causing the flips of the 

given spin, causes also a broadening of the NMR line. Hence, the local field has some 

distribution around zero and the probability of transitions shall also have a factor that 

a 

Fig. 8 



 70 

accounts for this distribution. Occurrence of this factor can be understood: if the spin 

that gives contribution to one wing of the NMR line flips, then this flip would hardly 

can cause flip of the spin that gives the contribution to the other wing of the NMR 

line since these two spins have different Zeeman energies, and at this transition the 

total Zeeman energy is not conserved. Hence, W will change as follows: 

2 2 2( ) | 1| | | ( ) ( ) ( )
2 2I Iloc locW H m I m g H gπ πγ ω γ ω±= < ± > =% %  For I = 1/2. 

The line over locH%  means the average local field. 2 2
2( ) ( )loc locH Mγ ω= =% %  - second 

moment of the NMR line. If broadening of the NMR line is homogeneous (caused 

only by dipole-dipole interactions), and nuclear spins form the regular lattice, then: 
2

0

22

( )1( ) exp
22

g
MM

ω ω
ω

π

 −
= − 

  
, i.e. 

2

1( )
2

g
M

ω
π

=  at resonance frequency. 

Hence, 2W M∼  - half-width of NMR line. Exact calculations for a simple cubic 

lattice and a crystal crushed into powder give 2 30W M=  for probability of mutual 

flips of pair of the neighboring spins. 

Let's return to the linear chain of spins and try to write the kinetic equation for 

the polarization in a point with coordinate х (for one of spins): 

( ) ( )[( ( ) ( )] ( )[( ( ) ( )]p x Wp x p x a p x a Wp x p x a p x a
t

+
− + + + − −

∂
= + + − − + + −

∂
. 

The first term reflects the fact that the probability for the given spin "up" is increased 

if at present the given spin is "down" and the neighbors are "up". The second term 

reflects the fact that the probability for the given spin "up" decreases if at present the 

given spin is "up" and the neighbors are "down". Here we deal with the conventional 

probability. It is necessary for two events to appear simultaneously and, hence, the 

equation includes the product of probabilities. 

The spin in our model can be only in "up" or "down" positions, therefore 

( ) ( )1p x p x− += − . 
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1 ( ) (1 ( ))[( ( ) ( )]

( )[(1 ( ) 1 ( )] ( ) ( ) 2 ( ).

p x p x p x a p x a
W t

p x p x a p x a p x a p x a p x

+
+ + +

+ + + + + +

∂
⋅ = − + + − −

∂
− − + + − − = + + − −

 

In the same way 1 ( ) ( ) ( ) 2 ( )p x p x a p x a p x
W t

−
− − −

∂
⋅ = + + − −

∂
. 

For the polarization we obtain: 

1 1 ( )

[ ( ) ( )] [ ( ) ( )] 2[ ( ) ( )],
1or ( ) ( ) 2 ( ).

p p p
W t W t

p x a p x a p x a p x a p x p x
p p x a p x a p x

W t

+ −

+ − + − + −

∂ ∂
⋅ = ⋅ − =

∂ ∂
= + − + + − − − − −

∂
⋅ = + + − −

∂

 

If we consider that polarization does not significantly changes from point to point,  
2

2
0 02

1( ) ( ) | | ...
2x x

p pp x a p x a a
x x= =

∂ ∂
± ≈ ± ⋅ + ⋅ +

∂ ∂
 

Then 
2 2 2

2 2 2
2 2 2

1 1 1( ) ( ) 2 ( ) ,
2 2

p p p p p pp x a a p x a a p x a
W t x xx x x

∂ ∂ ∂ ∂ ∂ ∂
⋅ = + + + − + − =

∂ ∂ ∂∂ ∂ ∂
 

2 2

2 1 2

2 2 2

2

                         i.e. ; [s сm ];

(generalization for the three-dimensional case).

p D p D W a
t

p p pp
x y z

−∂
= ∆ = ⋅ ⋅

∂
∂ ∂ ∂

∆ = + +
∂ ∂ ∂

 

The obtained equation is identical to diffusion equation: for diffusion there is a 

change of substance concentration through the surface area ∆S normal to change 

direction, the substance mass ∆m is transferred per time ∆τ, proportional to a 

concentration gradient dc/dx, area ∆S, and time interval ∆τ,  

.

Since , then .

dcm D S
dx

dm dm m dmc D
dV dx S dx

τ

τ

∆ = − ⋅ ⋅ ∆ ⋅ ∆

∆
= = = −

⋅ ∆ ∆
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Let's estimate the order of magnitude for D. For example, we take 19F (I = 1/2) 

nuclei in crystal CaF2. The distance rF–F = 2.73 Å, the NMR line width for fluorine 
12.5Oe=2 4006 s Oeγ π −⋅ ⋅ .  

Hence, 4 1
2 2.5 Oe =6.3 10 s ;M γ −= ⋅ ⋅  3 1

2 30 2.1 10 s .W M −= = ⋅   

D = W⋅ a2 =2.1⋅103 s-1 ⋅ 7.5⋅10-16 cm2 = 1.6⋅10–12 cm2s-1. Usually D ~ 10–13 cm2⋅s-1. 

Let's estimate the time for which the perturbation of polarization is transferred 

on the distance equal to half distance between paramagnetic centers (PC) at 

concentration of 0.1 %, i.e. on distance of the order of 30 … 40 Å. The mean-square 

length of diffusion polarization per time t is equal to x2
m = D t / 3, hence 0.5...5 st ∼ . 

It follows that the nuclei remote from the paramagnetic centers transfer their 

excitation to the nuclei that are close to the paramagnetic centers due to spin diffusion 

for 0.5 … 5 seconds, and those, in turn, transfer energy through the paramagnetic 

centers to a lattice. 

In immediate proximity from PC the spin diffusion is difficult. Close to PC 

there is a local field which value at the distance r from PC is created and is equal to 

Hloc≈/µr3. If µ=µB, and r = 3 Å (as for the nearest to Er3 + protons in LaES:Er3 +, 

 0.1%), then Hloc = 343 Oe; at the distance of 6 Å, Hloc = 43 Oe; at the distance of 

9 Å, Hloc = 13 Oe; at the distance of 12 Å, Hloc = 5 Oe. 

If the proton NMR line width is 2 … 3 Oe, then the probability of flip-flop 

processes between the “normal” protons and the protons at which the field is different 

from normal on the value of local field created by paramagnetic center, will be very 

small if this field exceeds the NMR line width. This is evident from the equation for 

W: 

( )2
0 2exp 2W Mω ω ∼ − −  

, 

where M2 ≈ ∆2 – square NMR line width. If 0ω ω− > ∆ , then exp […] → 0. 
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Thus, the nuclear spin diffusion near the 

paramagnetic center is difficult. It is possible to 

determine the size of this area supposing that it 

is limited by some sphere with the radius b (see 

Fig. 9) on which surface the local field created 

by the paramagnetic center is equal to the NMR 

line width for the nuclei remote from the paramagnetic center, i.e. 3
nS b Hγ = ∆h . 

The radius b is called the radius of spin diffusion barrier. It is assumed that the 

uniform relaxation rate for all "normal" nuclei 1/T1n is determined by averaging of 

the rates 1/T1n(r) in a volume enclosed between the sphere with radius b and the 

sphere with radius approximately equal to half distance between the paramagnetic 

centers which is determined from the condition V⋅NS = 1, or (4/3) R 3⋅NS = 1, where 

NS – number of PC in the unit volume (in 1 cm3): 

2 2
2

03 2
1 1 10

1 1 1 8 ( 1) 1 (1 )
( ) 5 3

R
S S

bn n e

N S SdV P
T V T r Tb H

γπ +
= ≈ ⋅ ⋅ ⋅ ⋅ ⋅ −∫

h
. 

The equation can be rewritten in the other form if we remember that 3
nS b Hγ = ∆h , 

and on the other hand, ( 3
n IH aγ∆ = h , a – distance between nuclei). 1/a3 = NI 

(really, NI is equal to the number of nuclei in a cube with an edge of 1 cm. 1 cm is 1/a 

lattice constants, i.e. in 1 cm3 there is 1/a3 unit cells (or the sites occupied with 

nuclei), i.e. 1/a3 nuclei). Thus n I IH Nγ∆ ≈ h .  

Using 3
1 and 1n n

I IS

H H
Nb γ γ

∆ ∆
= =

h h
, we will rewrite the equation as follows: 

               R 
 

                                                   b 

                                

Fig. 9 
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n
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γ

− − − − − ∆+
⋅   

 
The nuclear relaxation rate is much smaller than electron relaxation rate. 

In reality the considered model underestimates slightly the possibilities of 
nuclear diffusion. Really, if the local field created by PC is increased "smoothly" 
when approaching to PC, i.e. if the local fields "sensed" by the two neighboring 
nuclei, differ less than NMR line width (though the local field itself can be stronger 
in comparison with the NMR line width), then the diffusion between them 
nevertheless is possible. In other words, the radius of diffusion barrier should be 

determined not from the rigid condition 3
nS b Hγ = ∆h , but from milder condition 

3
S

n
r b

a H
r r

γ

=

 ∂
= ∆ ∂  

h
, where a – lattice constant (a ≈N I

–1/3). This approach reduces 

the radius of diffusion barrier and leads to ( )1 4
ISγ γ  times growth of T1n

–1 

approximately compared with that obtained. 
 

3.3. Nuclear relaxation via PC in the absence of nuclear spin diffusion 
 

If the crystal contains enough the paramagnetic impurities it may happen that 

the radius of diffusion barrier becomes larger than half of average distance between 

the paramagnetic centers. In this case all nuclei appear in the area of difficult spin 

diffusion; i.e. there is no "normal" nuclei. The excitation cannot be transferred from a 

nucleus to a nucleus, each nucleus relaxes by itself through the nearest paramagnetic 

centers. Then there are two questions: 

1. What impurity concentration approximately should be? 
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2. According to what law in this case the nuclear polarization after saturation 
changes, i.e. how the recovery curve of longitudinal magnetization looks like in this 
case? 

The radius of diffusion barrier is b3 ~ µe/∆Hn; ∆Hn ~ µnNI. The distance 

between the paramagnetic centers is R3 ~ 1/NS; b3 ~ R3 →µe / (µnNI) ~1/NS; NS/NI ~ 

µn/µe ~ 10–3, i.e. the diffusion becomes difficult if the concentration of the 

paramagnetic centers is ≥0.1 %. 

The longitudinal magnetization recovery in "usual" case is p (t) = 1 – Mt / M∞ 

= exp (–t/T1n). If each nucleus relaxes independently via the nearest paramagnetic 

center then the relaxation rate is different for different nuclei and then p(t) may be 

written as follows: 

( ) 1
1( ) exp ( ) ,i jn

j
p t t T r

− 
= − ⋅ 

 
∑  

where summation is performed over all sites occupied by the paramagnetic centers. 

The equation can be written in the following form: 

1
( ) exp

( )j i jn

tp t
T r

 
= − 

 
 

∏ , 

where j enumerates again the sites occupied by PC. It will be more convenient if j run 

over all sites of the lattice, both occupied and not occupied with the paramagnetic 

centers. If the relative concentration of PC is equal to c, then the probability to find 

the paramagnetic center by sorting all sites of the lattice is equal c, and the 

probability that a site is not occupied, is equal 1 – c. Taking this into account it is 

possible to rewrite p(t) as follows: 

1
( ) exp (1 ) 1

( )j i jn

tp t c c
T r

  
 = ⋅ − + − ⋅ 

    
∏ , 

where j enumerates the lattice sites and the relaxation occurs if the given site is 

occupied by the paramagnetic center. 

It is more convenient to rewrite the equation for p (t) in the following form: 
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1
( ) 1 1 exp

( )j i jn

tp t c
T r

   
  = − − − 

      
∏ . 

If c is small (estimates have already shown that the diffusion is difficult when c is 

larger than 10-3, but really it is not much), it is possible to rewrite 1- c (…) as the 

result of expansion of the exponent, i.e. 1 – c (…) ≈ exp [– c (…)], then 

1 1

1

( ) exp 1 exp exp 1 exp
( ) ( )

exp 1 exp ,
( )

jj i jn n

I
V i jn

t tp t c c
T r T r

tcN dV
T r

        
  = − − − = − − − ≈                   

   
  ≈ − − − 

      

∑∏

∫

 

where NI – total number of lattice sites (or 1/V), cNI = NS – number of sites occupied 

by PC, i.e. the absolute concentration of paramagnetic impurity. 

If nuclei are coupled to paramagnetic centers by the dipole-dipole interaction,  

( ) 6 2 2 2 2
11 sin cos , sin ,nT r A r dV r d d dr r dr dϕ= ⋅ ⋅ Θ ⋅ Θ = ⋅ Θ ⋅ Θ ⋅ ⋅ = ⋅ ⋅ Ω  

where dΩ – element of spatial angle. In this case  

( ) ( )( )6 2

1
1 exp 1 exp ,t dV A t r f r drd

T r
    − − = − − ⋅ ⋅ ⋅ Ω Ω        

∫ ∫  

where ( ) 2 2sin cos .f Ω = Θ ⋅ Θ  

Let's designate ( )6x A t r f−= ⋅ ⋅ ⋅ Ω , then 

( )1 6 1 6r A t f x−= ⋅ ⋅ ; ( )1 32 1 3r A t f x−= ⋅ ⋅ ; ( )1 6 7 61
6

dr A t f x dx−= − ⋅ ⋅ . 

Now we have 

( ) ( ) ( )

( )

( ) ( ) ( )

1 3 1 6
1

1 3 7 6 1 3 1 6

1 2 3 2 1 2

11 exp
6

1 exp

1 1 exp .
6

t T dV A t A t

x x x f f dx d

A t x x dx f d

− −

−

  − − = ⋅ − ⋅ ×    

× − − ⋅ ⋅ ⋅ ⋅ ⋅ Ω =  

= − ⋅ − − Ω Ω  

∫

∫

∫ ∫
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Thus, in case of relaxation via the paramagnetic centers in the absence of 

nuclear spin diffusion we obtained that 

1

( )( ) 1 exp
( ) n

M t tp t
M T

 
= − = −  ∞  

, 

where 

3 2 2 2 2 2
02 2

1

1 4 (1 ).
9 1

c
B IS

cn I
N g P

T
τπ µ γ
ω τ

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −
+

 

The obtained equation describes correctly the experiment if the paramagnetic 

impurities are distributed uniformly over the volume. Generally 

p (t) ~ exp [– (t/T1n) D/6], 

where D – dimensionality of distribution of the paramagnetic impurities. For flat 

lattice D = 2, for linear D = 1. 

 

4. Methods of relaxation time measurements 

 

One of the advantages of a pulsed method in comparison with continuous wave 

method is the possibility of direct measurements of the relaxation times – transverse 

(spin-spin) and longitudinal (spin-lattice) times. The transverse relaxation can be 

characterized by one parameter in the case when magnetization decay occurs 

exponentially. The NMR signal decreases in e  times for time 2T . If there is the 

broadening of the line caused by heterogeneity of the applied magnetic field or 

distribution of internal local fields (so-called nonuniform broadening) then it is 

possible to estimate 2T  from the FID. In this case the transverse relaxation time is 

related to the NMR line width ω∆  via the simple relation T2 = 1/∆ω. The nonuniform 

broadening accelerates decay of transverse magnetization and FID decreases with the 

time constant which can be designated as *
2T . The spin echo method allows to 

measures the true value of 2T . The spin echo amplitude depends exponentially on 

time interval τ  as shown in Fig. 10а. The simplest, though not the most exact 
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measuring method of the longitudinal magnetization time recovery, is the 

measurement of FID amplitude or echo depending on the pulse repetition period T . 

In this case the signal amplitude A  depends on T  as:  

( ) 11 exp( )A T T ∞ − −  . 

The saturation – recovery method (Fig. 10b) is more popular. It is three-pulse 

sequence. The first 2π  pulse destroys the longitudinal magnetization (saturation). 

The second and the third 2π  and π  pulses, respectively, are applied after time τ  

which form a spin echo signal. 

2π π

2ττ0 t

u

2π π

τ0 t

u
2π A

A

2(0)exp( 2 / )A A Tτ= −

[ ]1( ) 1 exp( / )A A Tτ= ∞ − −

а)

б)

Рис 9  а) методика измерения поперечной релаксации  б) методика
   

Fig. 10. a) Measuring technique of the transverse relaxation; 

b) Measuring technique of the longitudinal relaxation. 

 

/T2 

-τ/T1 
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The signal amplitude is proportional to the value of the longitudinal 

magnetization at the time τ . The time interval between the second and the third pulse 

remains invariable. 

The repetition period of all pulse sequence should be not less than 15T .  

 

5. NMR pulsed spectrometer  

 

5.1. Purpose 

 

 The pulsed coherent spectrometer is intended for recording the NMR signals 

and measurement of the spin-lattice and spin-spin relaxation times. The spectrometer 

receiver is of direct conversion with quadrature detection. The transmitter and 

receiver are broadband (5 … 50 MHz). The tunable circuits: probe and the quarter 

lambda network, that provides a quadrature of the reference voltages of synchronous 

detectors. 

 

5.2. Technical characteristics 

 

Frequency band        5 – 50 MHz 

Probe: 

Operating frequency       13.740 MHz 

Frequency band        330 kHz 

Transmitter 

Input impedance           50 Ω 

Video pulse input        ТТL 

Output impedance        50 Ω 

Output power        25 W 

Preamplifier of receiver  

Input and output impedance      50 Ω 

Noise factor         1.5 dB 
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Gain           40 dB 

Receiver 

Input impedance        50 Ω 

Gain          60 dB 

Band Width         100 kHz 

 

5.3. Probe design 

 

 The inductance coil with the sample and the capacitor of the tank circuit are 

located in the gap between the poles of electromagnet (see Fig. 11). 

Рис.9 Принципиальная схема датчика импульсного спектрометра

L

N S

C C
к выходу

передатчика
к предусилителю

приемника

With the help of inductive coupling the resistance of tank circuit at operation 

frequency is matched with the wave resistance of a coaxial cable, output resistance of 

the transmitter and the input resistance of the preamplifier of receiver – 50 Ω. 

The probe construction allows to alternately commute alternately the oscillating 

circuit with transmitter and receiver. The transmitter is connected to the circuit at RF-

pulses by means of the diode keys when the voltage on the transmitter output exceeds 

1 V. For protection of the preamplifier of receiver at pulses the network equivalent to 

the quarter wave transformer is used. For a segment of line with length of quarter-

Fig. 10. Fig. 11. 

to trasmitter  to receiver 

preamplifier 

Schematic diagram of the probe  
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wave ( / 4λ ) the relation 2
0 1 2Z Z Z=  relating the wave impedance of cable 0Z , load 

impedance 2Z  and the input impedance Z1 is valid. The quarter wave circuit is 

equivalent to this segment if its inductance and capacitance satisfy the relations 

0Z L C= , 1 LCω = , where 0Z  – wave impedance of the equivalent segment of 

the line, and ω  – operational frequency of a spectrometer. During the pulse the 

diodes on the output of / 4λ  chain are conducting, 2Z  is small, and therefore 1Z  is 

much larger than 50 Ω. The output power of the transmitter completely enters into the 

circuit, and the high voltage at the preamplifier input is absent. In the absence of 

pulses the transmitter is disconnected, and tank circuit is in matched junction with the 

preamplifier input.  

5.4. Operation principle  

The functional assemblies and voltage waveforms in different points of a 

spectrometer are presented on the block-diagram (Fig. 12). The harmonic oscillations 

on a synthesizer output are modulated in the RF pulse-former by video pulses from 

the generator Г5-82 output. Radiofrequency pulses are amplified and feed on the 

probe. The NMR signal is amplified by the portable low-noise preamplifier, then by 

the amplifier of the receiver and feed on the input of the quadrature detector. The 

latter corresponds to the two analogue multipliers of voltages and the low-pass filter 

(LPF) at which the phases of reference voltages are shifted on π/2 relative each other, 

i.e. are in a quadrature. The quadrature detector relays the signal spectrum to low-

frequency region on the value ω , where ω  – frequency of the frequency synthesizer, 

and allows to distinguish the frequencies above and below the latter. LPF eliminates 

the combination frequencies of the order of 2ω  which are formed due to 

multiplication. The output signals of the quadripole detector are proportional to 

values of xM  and yM  of RF rotating with a frequency ω  with the corresponding 

choice of the reference signal phase. The two output signals of the receiver can be 

considered also as the complex signal which Fourier-transformation gives a spectrum 

with zero frequency corresponding to the frequency ω  of a spectrometer. 
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Рис.10  Блок-схема импульсного спектрометра
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Fig. 12 Block diagram of a pulse spectrometer. 
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6. Recording and processing of the pulse NMR signals 

 

Recording and processing of NMR spectra is carried out with the digital 

oscilloscope АСК-2167 and computer with the help of the corresponding software. 

First of all, it is necessary to prepare the oscilloscope for operation and obtain 

the image of complex NMR signal on its screen. Then, having established the 

connection between the computer and oscilloscope to carry out data transmission and 

its display on the computer. 

 

6.1. Preparation of oscilloscope for operation and observation of NMR signals  

 

For preparation of oscilloscope for operation it is necessary to perform the 

following settings. 

a) Perform the automatic calibration of the device. For this purpose it is 

necessary to disconnect all cables from the input sockets. Open the SYSTEM menu 

by the button UTILITY, press the button F3 (autocalibration), then – F2 (factory 

settings). Select language by the button F4 (for example, Russian or English). 

b) Set the channels of vertical scan CH1 and CH2. Open the menu of the 

channel with the corresponding button CH MENU and set the following: 

input – DC, 

channel – on, 

tester – 1×, 

invert. – off. 

c) Select the elements of timing control. Call the menu by TRIG MENU and 

set the following: 

type – single, 

source – external, 

type – front, 

front – decay, 
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triggering mode – standby, 

input – DC. 

d) Prepare the oscilloscope for measurements. Open the menu by MEASURE 

button and set the measured quantity: 

source – type 

channel 1 – Vmax, 

channel 1 – Vmin, 

channel 2 – Vmax, 

channel 2 – Vmin, 
and, by opening the corresponding menu by the button CURSOR set the following:  

type – voltage, 

source – channel 1 (or channel 2). 

For both channels 

cursor 1 – 0.0 mV, 

cursor 2 – 0.0 mV, 

difference – 0.0 mV. 

By handles VOLT/DIV set the division value of the vertical scale (for example, 5V). 

All these settings will be necessary also for measurements of the relaxation time with 

this oscilloscope. 

For observation of the NMR complex signal form on the oscilloscope screen  it 

is necessary to apply the output quadrature signal of the NMR spectrometer receiver 

on the inputs of oscilloscope channels CH1 and CH2, in our case – the signal of spin 

induction (SSI) in some orientation of the sample relative the magnetic field (for 

example, H || [111]).  

Arrange the signals of channels CH1 and CH2 on the screen in the opposite 

sides from the central horizontal line and match zero levels of signals with it. Perform 

fine-tuning of the magnetic field from the signal appearance on the oscilloscope 

screen: the beginning of the registered signal decay of one channel shall concur with 

the beginning of the registered signal decay of the other channel.  
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Match the beginning of the registered free induction decay (FID) with central 

vertical line on the oscilloscope screen by the horizontal position adjusting knob 

POSITION. The so-called “dead time” of the receiver MBt  for this orientation of the 

sample is determined as 

 max ,MBt t τ= −     

maxt – time, corresponding to a maximum of the observed SSI on the screen, τ – 

duration of the probing radio-pulse. 

The voltage value in any point of the pulse can be measured with the help of 

the horizontal cursors directly on the oscilloscope screen. 

 

6.2. Start of data transmission and mapping to the computer. Data saving and 

processing 

 

Perform fine-tuning of the magnetic field from the signal appearance on the 

oscilloscope screen and engage the NMR-stabilization. Further action and settings are 

as follows.  

1. Connect the oscilloscope with the computer by the USB cable. 

2. Start the Oscilloscope program.  

3. Establish connection between the computer and the oscilloscope.  

a) Select successively the menu items  

Communication → Port Setting. 

In the appeared window check the setting Connect using → USB and the 

presence of information about the oscilloscope Available port. 

In case of its absence close the program, disconnect the USB cable and 

repeat connection. 

b) Select successively the menu items:  

Communication → Continue data download (USB and Serial Port supported), 

thereby starting the data transmission and mapping from the oscilloscope on the 

computer. 



 86 

 

Fig. 13. The program for work with the oscilloscope. 

Fig. 14. USB Port settings. 
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Fig. 15. Start of the data transmission and mapping. 
 

4. To save the data from the oscilloscope to a file it is necessary to successively 

choose the menu items View → Data table, by opening a window shown in Fig. 16. 

To save the data it is necessary to press the button SAVE AS.  

In the appeared window for file selection (Fig. 17) it is necessary to create a 

folder with the number of your group in C:\TMP\ (it is created once at the first 

saving). Then to enter a file name (do not forget to specify in it the current crystal 

orientation) and type of the data. For further work in program Origin 7.0 (or the 

earlier version) it is recommended to save the data in the ASCII format - Comma 

separated value text (*.csv). For older versions of Origin it is possible to save the 

data in Microsoft Excel - Excel (*.xls) format. For other software packages (Matlab, 

MatCad, etc.) it is necessary to specify first a format of the input data of this package. 

In the saved file the first column corresponds to the point number. 

Therefore these digits at Fast-Fourier-Transformation shall be recalculated in the time 

values. For this purpose it is necessary to remember the values of scanning speed of 

oscilloscope Td (usually 20 µs per division, with 10 divisions in all scale). Further it 

is necessary to determine the number of points N in the saved spectrum.  
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Then the values of the first column shall be recalculated using the following equation: 

10
i

Tdt i
N
⋅= , 

where i –point number, it − value of this point on a time scale.  

 

  
Fig. 16. Data table. 

Fig. 17. File saving window. 

 

6.3. Spin-lattice relaxation time measurement by the SSI signal saturation method 
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When measuring by this method it is necessary to determine the time for which 

the NMR signal intensity U will decay in e times when decreasing the pulse period T 

(item 3.3).  

Switch on the current image on the oscilloscope screen. If necessary tune the 

magnetic field and obtain the correct image of a curve on the screen, then engage the 

NMR-stabilization of the magnetic field. 

Select a reference voltage phase of quadrature detector of the receiver so that 

the one of the total signal components is equal to zero. Then the second component 

will be the total signal. The measurements shall be carried out at some point M of this 

component. 

Check up the presence of the one of horizontal cursors on the central horizontal 

line of the oscilloscope screen (there shall be also zero levels of the signals of both 

channels). Match the second horizontal cursor with point M on the signal image. 

Record the corresponding T values (in ms) and U (difference of cursor indications in 

V) in the table and plot the change of signal intensity versus the pulse repetition 

period. Estimate the spin-lattice relaxation time using the equation 

( ) 11 exp( / )A A T T ∞  = − − . 

 

Task  

1. Set the parameters of the radio-frequency pulses of the transmitter on the 

pulse generator – 

pulse repetition Т = 1 s, 

pulse duration τ = 3.1 μs, 

pulse amplitude A = 5 V, 

triggering – internal, single pulses, 

on frequency synthesizer – 
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typeset the number– 6869, then the frequency value at the output f/2 will be 

determined from the equation ( )6869 4 4 / 2ν = ⋅ + . 

Tune the field for resonance, activate the NMR-stabilization. Estimate the 

duration of a 2π  pulse (the signal amplitude is equal to zero for a π  pulse). 

2. Record the form of the complex NMR signal by points in orientations [100], 

[110] and [111]. 

3. Measure the spin-lattice relaxation time in three orientations, changing the 

pulse repetition period from 1 second to 10 milliseconds. 

 

Additional task: 

 

Compare the shape of signals with inverse Fourier transform of stationary 

NMR signal (Laboratory practical work “Continuous wave nuclear magnetic 

resonance”).  
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