УДК: 530.1

НЕЛИНЕЙНАЯ ДИНАМИКА УЕДИНЕННЫХ ВОЛНОВЫХ СТРУКТУР В КОМПЛЕКСНЫХ СПЛОШНЫХ СРЕДАХ

Е. С. Белашова¹, О. А. Харшиладзе², В. Ю. Белашов³

 ¹Казанский национальный исследовательский технический университет им. А.Н. Туполева – КАИ, 420111, г. Казань, ул. К. Маркса, 10 E-mail: <u>bel_lena@mail.ru</u>
²Тбилисский государственный университет им. Ив. Джавахишвили, Грузия, 380043, г. Тбилиси, ул. Университетская, 2 E-mail: oleg.kharshiladze@gmail.com
³Казанский федеральный университет, 420008, г. Казань, ул. Кремлёвская, 18 E-mail: vybelashov@yahoo.com

Аннотация. Представлены результаты моделирования эволюции и взаимодействия неодномерных солитонных структур, описываемых уравнениями нелинейной системы ВК: обобщенным уравнением КП и уравнением 3-GNLS. Показано, что столкновительное взаимодействие может иметь как упругий, так и неупругий характер с образованием *N*-солитонных структур. Результаты согласуются с ранее полученными аналитически условиями устойчивости решений для уравнений системы ВК.

Ключевые слова: солитоны; система уравнений ВК; обобщенное уравнение КП; нелинейное уравнение Шредингера; численное моделирование; взаимодействие; столкновение

NONLINEAR DYNAMICS OF SOLITARY WAVE STRUCTURES IN COMPLEX CONTINUOUS MEDIA

E. S. Belashova, O. A. Kharshiladze, V. Yu. Belashov

Abstract. The results of simulation of evolution and interaction of the multidimensional soliton structures being described by the equations of nonlinear BK system, namely: generalized KP equation and 3-GNLS equation are presented. It is shown that the collision interaction can be elastic and non-elastic with the *N*-soliton structures' formation. The results are in conformity with the stability conditions obtained earlier analytically for the equations of the BK system.

Keywords: solitons; BK system; generalized KP equation; nonlinear Schrödinger equation; numerical simulation; interaction; collision

Введение. Основные уравнения

Система, описывающая динамику широкого класса неодномерных нелинейных волновых процессов в комплексных сплошных средах с дисперсией, известная как система Белашова-Карпмана (система ВК), записывается следующим образом [1]:

$$\partial_t u + \hat{A}(t, u)u = f, \ f = \kappa \int_{-\infty}^x \Delta_\perp u dx, \ \Delta_\perp = \partial_y^2 + \partial_z^2$$
(1)

и, если дифференциальный оператор имеет вид $\hat{A}(t,u) = \alpha u \partial_x - \partial_x^2 (v - \beta \partial_x - \gamma \partial_x^3)$, представляет собой 3-мерное (3D) обобщенное уравнение Кадомцева-Петвиашвили (уравнение GKP) [1-3]

$$\partial_{x}(\partial_{t}u + \alpha u \partial_{x}u - \nu \partial_{x}^{2}u + \beta \partial_{x}^{3}u + \gamma \partial_{x}^{5}u) = \kappa \Delta_{\perp}u, \quad \kappa = -c_{0}/2, \qquad (2)$$

которое, в зависимости от физического смысла функции *и* и коэффициентов, описывает ионнозвуковые и быстрые магнитозвуковые (БМЗ) волны в плазме, нелинейные структуры типа ВГВ в верхней атмосфере (ионосфере), волны на поверхности «мелкой» жидкости и др. [1-4].

В случае, когда оператор в (1) имеет вид $\hat{A}(t,u) = i [\gamma |u|^2 - \beta \partial_x^2] + \alpha/2$, система (1) переходит в 3D обобщенное нелинейное уравнение Шредингера (уравнение 3-GNLS) [5]

$$\partial_t u + i\gamma |u|^2 u - i\beta \partial_x^2 u + (\alpha/2)u = \sigma \int_{-\infty}^x \Delta_\perp u \, \mathrm{d}x + f', \qquad (3)$$

где $\alpha, \beta, \gamma = \phi(t, x, y, z), f' = f'(t, x, y, z),$ которое описывает динамику огибающей модулированных нелинейных волн и импульсов (волновых пакетов) в средах с дисперсией и имеет мно-

гочисленные важные приложения [5]: в физике плазмы (распространение ленгмюровских волн в горячей плазме), нелинейной оптике (распространение световых импульсов в кристаллах, оптоволокне и плоских оптических волноводах) и гидродинамике (распространение гравитационных волн малой амплитуды на поверхности глубокой невязкой жидкости) и др.

В работах [1-3, 5, 6] было аналитически показано, что уравнения (2), (3) при $v,\alpha = 0$ могут иметь устойчивые 1D, 2D и 3D солитонные решения. Настоящая работа посвящена численному изучению динамики, главным образом, 2D и 1D (в силу наглядности) солитонных структур с целью подтверждения полученных нами ранее аналитических результатов.

Моделирование динамики солитонных структур

При моделировании использовались специально развитые в [1-3] для уравнений системы ВК высокоточные методы, основанные как на конечно-разностном, так и на спектральном подходах. В численных экспериментах изучались эволюция и столкновительные взаимодействия солитонных структур, описываемых уравнениями (2), (3), когда, согласно теории, при $v, \alpha = 0$ должны иметь место устойчивые решения. Представим ниже некоторые основные результаты.

В экспериментах в рамках модели GKP было установлено, что солитоны с гладкими (алгебраическими) асимптотиками, когда в (2) $\nu=0$ и $\gamma > 0$, $\beta \le 0$ взаимодействуют тривиально, обмениваясь импульсами и энергией (рис. 1), вне зависимости от расстояния $\Delta r(0)$ между ними.

Рис. 1. Косое столкновение 2D солитонов с алгебраическими асимптотиками при $u_1(0)=12$, $u_2(0)=4$, $\Delta r(0)=3.3$: (a) t=0; (b) t=0.7.

Динамика же солитонов при γ , $\beta > 0$, имеющих осциллирующие асимптотики, нетривиальна и результат взаимодействия зависит от соотношения амплитуд начальных импульсов и Δr (Δx при движении вдоль оси x) в момент t=0. Из примера, представленного на рис. 2, можно видеть, что в случае существенно различающихся амплитуд $u_1(0)$ и $u_2(0)$ при относительно малом $\Delta x(0)$, взаимодействие импульсов имеет неупругий характер и, в результате, образуется один импульс с осцилляторной структурой хвостов, соответствующий 2D GKP-солитону.

Рис. 2. Образование 2D солитона с осцилляторной структурой при взаимодействии начальных импульсов $u_1(0)=8$, $u_2(0)=1$ при $\Delta x(0)=4$: (a) t=0; (b) t=0.8.

Качественно аналогичные результаты были получены и при взаимодействии солитонов с близкими значениями амплитуд при $\Delta x(0) \leq u_{1,2}(0)$: в процессе эволюции также формируется осцилляторная структура и импульс, имеющий меньшую амплитуду, «поглощается» хвостом большего и образуется один солитон с $u_2(0) < u < u_1(0)$ и осциллирующими асимптотиками.

Особый интерес представляют случаи, когда $\Delta x(0)$ больше характерных размеров взаимодействующих импульсов, а амплитуды близки. В этих случаях взаимодействие приводит к образованию связанного состояния и образуется солитонная структура с двумя максимумами и осциллирующими хвостами – 2D bi-солитон уравнения GKP. Заметим, что возможность существования таких структур была впервые отмечена в [7], однако динамика их формирования и устойчивость были впервые исследованы в [2]. Здесь мы исследовали соответствие численных результатов аналитическим [2]. Приведенные на рис. 1-3 результаты соответствуют случаям, когда характеристики среды распространения удовлетворяют условиям устойчивости решений.

Рис. 3. Формирование 2D bi-солитона при $u_1(0)=1.35$, $u_2(0)=1.3$, $\Delta x(0)=6$: (a) t=0; (b) t=0.9.

В случаях, когда в уравнении GKP v > 0 (эффекты диссипации значимы [2]), наряду с общим затуханием амплитуды волнового поля, отмечается изменение структуры 2D солитонов: наблюдается эффект удлинения солитонного "хвоста", уменьшение частоты осцилляций и гашение колебаний позади главного максимума, а также несимметричное изменения интегралов, соответствующих импульсу и энергии во фронтальной и задней "кавернах" (где u < 0) [1, 2].

Трехмерные задачи в рамках модели GKP связаны, главным образом, с изучением динамики пучков БМЗ волн в замагниченной плазме. Они были подробно исследованы в наших работах [1, 3, 4, 6] и на них мы здесь останавливаться не будем.

Рассмотрим теперь основные результаты, полученные нами при моделировании эволюции и взаимодействии солитонных структур в рамках модели уравнения GNLS (3). Вопросы устойчивости GNLS-решений были аналитически исследованы в [5], здесь же целью являлась экспериментальная проверка этих результатов, когда среда нестационарна и неоднородна.

Рис. 5. Эволюция 1D гауссова импульса огибающей в нестационарной среде при $\beta = 0.5, \gamma = -1+0.01 \sin 2\pi t$

На рис. 4 представлен результат моделирования в простейшем 1D случае ($\sigma = 0$) при $\beta(t) = -0.5(1+\sin 0.1\pi t)$, $\gamma = -1$ и отрицательной нелинейности, когда диссипацией и внешними воздействиями можно пренебречь (α , f'=0). Условие устойчивости решений (см. [5]) выполняется. Видно, что эволюция начального импульса огибающей $u(x,0) = A\exp(-x^2/l)$, $A = \sqrt{|\beta/\gamma|}$ сопровождается его пульсациями со сдвигом импульса в направлении оси *x*. В случае, когда $\beta = 0.5$, $\gamma = -1+0.01\sin 2\pi t$, наблюдаются более мощные устойчивые пульсации типа бризеров, без какого бы то ни было сдвига импульса (рис. 5). В обоих случаях реализуются режимы так называемой квазиустойчивой эволюции.

На рис. 6 представлены результаты исследования взаимодействия двух импульсов GNLS в зависимости от начального расстояния между ними при слабой отрицательной нелинейности и отсутствии диссипации, когда условие устойчивости выполняется. Видно, что результат взаимодействия определяется величиной s при t = 0, и при уменьшении s можно наблюдать

переход от устойчивого состояния к режиму устойчивых пульсаций типа бризеров.

Когда условие устойчивости [5] не выполняется, во всех случаях наблюдается рассеяние импульсов в процессе эволюции. Учет влияния диссипации ($\alpha > 0$ в уравнении GNLS), как и в случае уравнения GKP, приводит, наряду с общим затуханием амплитуды волнового поля, к изменению структуры солитонов с укручением передних фронтов и удлинением хвостов.

Заключение

В заключение, в работе мы численно исследовали динамику 1D и 2D солитонных структур, описываемую уравнениями GKP и GNLS системы BK с целью подтверждения полученных ранее аналитически условий устойчивости для этих моделей. Результаты полностью подтвердили аналитические выкладки [1-3, 5, 6] и могут быть полезны в исследованиях в таких областях, как физика плазмы, гидродинамика, физика верхней атмосферы и нелинейная оптика.

Благодарности

Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров. Работа была поддержана Национальным научным фондом Грузии им. Шота Руставели (SRNF) (грант № FR17 252).

Список литературы

- 1. Belashov V.Yu., Vladimirov S.V. Solitary Waves in Dispersive Complex Media. Theory, Simulation, Applications. – Springer-Verlag, 2005.– 304 p.
- 2. Белашов В.Ю. Уравнение КП и его обобщения. Теория, Приложения. Магадан: СВКНИИ ДВО РАН, 1997. 162 с.
- Белашов В.Ю., Белашова Е.С. Солитоны. Теория, моделирование, приложения. Казань: РИЦ «Школа», 2016. – 273 с.
- 4. Belashov V.Yu. Nonlinear effects for FMS waves propagating in magnetized plasma // Plasma Phys. Control. Fusion. 1994. V. 36. P. 1661-1669.
- Belashov V.Yu., Kharshiladze O.A., Rogava J. Interaction of the multidimensional NLS solitons in non-uniform and nonstationary medium: modeling and stability problem // J. Astrophys. Aerospace Tech. – 2018. – V. 6. – P. 38.
- Belashov V.Yu., Belashova E.S., Kharshiladze O.A. Nonlinear Wave Structures of the Soliton and Vortex Types in Complex Continuous Media: Theory, Simulation, Applications // Lecture Notes of TICMI. V. 18 / Ed. G. Jaiani. – Tbilisi: Tbilisi University Press, 2018. – 90 p.
- 7. Абрамян Л.А., Степанянц Ю.А. О структуре двумерных солитонов в средах с аномально малой дисперсией // ЖЭТФ. 1985. Т. 88. С. 1616-1621.