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Abstract

A two-dimensional doubly-periodic, three-phase hexagonal structure is considered.
The flow in the structure is generated by three sets of vortexes/sinks/sources, which are
the same in each phase and are located in the centers of the hexagons. Complex analysis
methods are utilized to reduce the doubly periodic R-linear conjugation problem to the
simpler one, Riemann-Hilbert (RH) problem, on a three-sheeted Riemann surface. In
turn, the latter problem is reduced to a RH problem involving three joined sectors on
the plane, which was previously investigated in [3]. The limiting cases with one non-
conducting phase and two phases of the same conductivities are investigated.

All solutions derived are verified both numerically and analytically. Examples of
relevant flow networks, streamlines and equipotentials, are plotted in the whole structure
and separately in each phase.

Key words:Composite materials, doubly periodic structure, complex analysis, piece-wise
meromorphic solution, conformal mapping

1 Introduction

In this paper we study a planar two-dimensional doubly-periodic three-phase heterogeneous
structure. Multi-phase composites, as vital in modern engineering and physics, are the sub-
ject of many studies both theoretical and numerical. The main efforts of scientists studying
the subject are aimed at determining so-called effective parameters of composites. We are
not going to review the area, just mention one of the first work [20], the comprehensive book
[10], and later works [5, 6, 13, 11].

More difficult and much more rare are works in which explicit solutions for the field
variables are found. This problem was solved for a field generated by a dipole at infinity for
two-, three- and four-phase rectangular checkerboards ([7, 1, 14, 2]), as well as for two-phase
circular, triangular and three-phase rhomboidal doubly-periodic structures ([12, 15, 3]).

The papers [16, 17, 18, 19, 4, 8] deal with the fields that are generated by arbitrary
vorteces/sinks/sourses in some simple model composites.

The ideas of the last two groups of works are combined in the present paper. Namely,
we consider hexagonal three–phase tessellation with three sets of vorteces/sinks/sourses, the
same in each phase, which generate a field in the structure. Mathematically, this problem
relies upon the Markushevich problem (the problem of R-linear conjugation or the generalized
Riemann problem), which ultimately can be reduced to the RH problem for three joined
sectors. Exactly the same RH problem was considered in [3] for a non-trivial geometry (see
Figure 1) constructed from diamonds.

Figure 1: The 3-phased regular diamond structure.
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The paper is organized as follows: We formulate the problem, and set forth our notation
in section 2(2.1). Then the tessellated structure is reduced to a much simpler, three joined
sectors, problem using conformal mappings (subsection 2.2). It turned out that the last prob-
lem exactly coincided with the earlier studied in [3]. This made it possible to immediately
write down the general solution of the set boundary value problem (subsection 2.3). The
solvability conditions and the unique solution satisfying some additional requirements are
found in subsection 2.4. Some examples of relevant flow networks, streamlines and equipo-
tentials, are given in subsection 2.5. The limiting case of a two phase structure is studied in
section 3. Some concluding remarks are summarized together in section 4.

2 The three-phased double-periodic structure

We consider three-phase, piecewise continuous, doubly-periodic, linear media (see Fig. 2)
whose stationary physical fields can be represented in terms of a vector field that is both
solenoidal and irrotational; this encompasses several physical scenarios in hydrology, electro-
or magneto-statics, heat flow, and elasticity. The language of hydrology is used in later
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Figure 2: The 3-phased regular hexagonal structure.

sections. In each phase, distinguished by the subscript j where j = 1, 2, 3, we define a vector
field vj = (vjx, vjy) of the horizontal and vertical components vx, vy such that both

∇ · vk = 0, ∇× vk = 0.

We will utilize complex variables, that is, z = x + i y. In each phase, Ωj , piecewise mero-
morphic functions vj(z) = vjx − i vjy are defined (j = 1, 2, 3). The continuity boundary
conditions between each phase are that the normal components of vj are continuous across
each boundary, and that the tangential components of ρjvj are similarly continuous; the
constant parameters ρj correspond to a phase property of each medium. In the terminology
of hydrology we have the Darcian velocity vector v = vx + ivy = −k∇h with h(x, y) as the
hydraulic head and k is the hydraulic conductivity. The phase property ρ is the resistivity,
and it is 1/k.

The flow is generated by three sets of vortexes/sources/sinks, which are identical in each
phase and located at the hexagons centers.

2.1 Formulation

Each of the three phases Ωj of the composite structure we are studying consists of an infinite
number of hexagons, each with sides length l and vertex angles 2π/3. Through the center of
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each hexagon go three symmetry axes of the whole structure. These axes form three sets of
parallel straight lines, one is perpendicular to the real axes, and the others cross it subtending
angles −π/6 and π/6 with the real axis (see dot-dashed lines in Fig. 2 ). Let L be the set
of all intervals forming interface of our structure. L consists of three subsets Lj , which are
the unions of all intervals going under the angle (j − 1)π/3 to the real axis for j = 1, 2, 3
respectively. In its turn, Lj = Lj1 ∪ Lj2 ∪ Lj3 and Ljk is the set of corresponding intervals
along which are conjugated phases Ωk and Ωk+1, k = 1, 2, 3 (here and everywhere below
subindex 4 has to be identified with subindex 1)

Using the continuity boundary conditions between each phase, we write the boundary
value problem as

Re [εj−1(ρkvk(t)−ρk+1vk+1(t)] = 0, Im [εj−1(vk(t)−vk+1(t)] = 0, t ∈ Ljk, (1)

where k = 1, 2, 3, j = 1, 2, 3, ε = eiπ/3 and remind that v4(z) ≡ v1(z).
Last two real conditions are equivalent to the following single complex boundary condition

vk(t) = Akvk+1(t)−Bkε
2(j−1)vk+1(t), t ∈ Ljk, k = 1, 2, 3, j = 1, 2, 3, (2)

where

Ak =
ρk + ρk+1

2ρk
, Bk =

ρk − ρk+1

2ρk
, k = 1, 2, 3 (ρ4 = ρ1). (3)

Our structure is the doubly-periodic one it has two primitive periods 2ω = 3lε and
2ω′ = 3lε, it’s elementary cell is the parallelogram (rhombus) bounded by dashed lines in
Fig. 2; we use the same Ω for each portion of a particular phase, i.e. Ωj are the all hexagons
the resistivity of which is ρj as well as every one representative of this set (j = 1, 2, 3). A
piece-wise meromorphic solution of the problem (2) may have integrable singularities at the
vertices of hexagons, and there should be simple poles at their centers, such that

resOjvj(z) =
Qj − iΓj

2π
, j = 1, 2, 3, (4)

where Oj is the center of Ωj , Qj is the sink/source strength, Γj is the vortex intensity. Below
it will be shown that only two of the three pairs (Qj ,Γj) can be fixed in advance.

Thus, it is required to find a piecewise meromorphic doubly periodic, with primitive
periods 2ω = 3lε and 2ω′ = 3lε, solution v(z) = vk(z), z ∈ Ωk of the boundary-value
problem (1) having integrable singularities at corner points of the interface and satisfying
the conditions (4).

2.2 Conformal mapping

Below, instead of the elementary cell, we consider the union Ω of three adjacent hexagons
Ω1, Ω2, Ω3 (see Fig. 3). The coinciding second subindex in the designation of the vertices
Akj means that the corresponding vertices coincide or congruent (differ by a period).

We begin with a conformal mapping of the sector {ζ : 0 < arg ζ < π/3} onto the triangle
with vertices A11, O1, A16, which are mapped to (0, 1,∞). The required mapping gives the
Schwarz-Christoffel integral

z(ζ) =
lΓ(2/3)

Γ(1/3)2

∫ ζ3

0

dt

t2/3(1− t)2/3
− l. (5)

Using the definition of the hypergeometric function, the last integral is identified as

z(ζ) =
3lΓ(2/3)ζ

Γ(1/3)2
F(1/3, 2/3; 4/3; ζ3)− l.
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Figure 3: Three adjacent hexagons (an analogue of the elementary cell)

We use successive analytic continuations of the function z(ζ), via the Riemann-Schwartz
symmetry principle, at first across the interval (0, 1) and then across both sides of the cut
along the ray (1,∞). The continued function gives a conformal mapping of the three-sheeted
sector, the sheets of which are glued together as shown in Fig. 4, onto the hexagon Ω1 (here
and below, the same notations are used for images and preimages). Further continuation
of z(ζ) through each of the sides (A11, A12) and (A11, A16) is defined on a three-sheeted
Riemann surface with cuts along the rays {ζ; arg ζ = (2k + 1)π/3}, k = 0, 1, 2 on the second
and third sheets. This surface is mapped by the function z(ζ) onto Ω. Note that opposite
sides of cuts correspond to congruent sides of Ω. We identify congruent sides of Ω and glue
correspondingly sides of cuts. Thus we obtain a closed three-sheeted Riemann surface Rζ .

Consider the inversion ζ(z) (not to be confused with the Weierstrass ζ-function) of the
function obtained by all possible analytic continuations of the function (5). Clearly, that if
ζ(z) is defined in Ω1 then

ζ(z) = ε2ζ(ε2(z −O2)) and ζ(z) = ε2ζ(ε2(z −O3)) (6)

are its analytic continuations into Ω2 and Ω3, respectively. The subsequent doubly-periodic
extension from Ω to the whole plane gives the function ζ(z), which is an elliptic function
with primitive periods 2ω, 2ω′ and simple zeros and poles at all points congruent with A11,
A13, A15 and A12, A14, A16, respectively. Hence, under the condition ζ(0) = 1, we obtain
([9], p.227)

ζ(z) = −σ(z + l)σ(z − lε)σ(z − lε)

σ(z − l)σ(z + lε)σ(ζ + lε)
, (7)

where σ(z) = σ(z;ω, ω′) is the Weierstrass σ-function with primitive periods 2ω, 2ω′. Note
that the sum of zeros of ζ(z) within the parallelogram of periods equals the sum of its poles.
The function (7) maps conformally the domain Ω onto the Riemann surface Rζ (see Fig. 4).

The mapping function (7) saves angles at all vertices Akj and satisfies the conditions:

ε2(k−1)ζ(ε2(j−1)(z −Ok) +Ok) ≡ ζ(z), ζ(ε2j−1(z −Ok) +Ok) ≡ 1/ζ(z),
ζ(2Ok − z) ≡ ε2(k−1)/ζ(z), ζ(ε±2(z −Ok) +Ok) ≡ ζ(z), j, k = 1, 2, 3.

(8)
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Figure 4: The image of the domain Ω under the mapping by function (7)

The first identity (8) means that the values of the function (7) at points symmetric about
diagonals of the hexagon Ωk are symmetric with respect to bisectrix of the three–sheeted
sector Ωk in the ζ-plane. Its validity is a direct consequence of the method of the analytic
continuation through which the mapping function (7) was obtained.

The second identity (8) connects the values of the function (7) at two points symmetric
about the perpendiculars from the center Ok to the sides of the hexagon Ωk. To prove this
identity, it is sufficient to take into account that the same function (7) can be obtained if
we start from the triangle A11O11O1 (see Fig. 3). We map this triangle on the curvilinear
triangle A11O11O1 with (O11, O1) being the arc of the unit circle (see Fig. 4). Then the
Riemann-Schwarz symmetry principle gives such an analytic continuation through the side
(O11, O1) of the mapping function, which satisfies the second identity (8).

The third identity (8) connects the values of the function (7) at two points that are
symmetric about the center Ok of the hexagon Ωk. This identity follows from the first two

identities (8), since 2Ok − z = ε2(k−1)(((ε2l−1(z −Ok) +Ok)−Ok) +Ok) if k − l = 2.
The last identity (8) means that the function (7) takes the equal values at three points,

which are obtained from each other by rotating through an angle 2π/3 relative to the center
Ok. The required identity is the result of the dual application of the first identity (8) using the

representation ε±2(z−Ok)+Ok = ε2(m−1)(((ε2(l−1)(z −Ok) +Ok)−Ok)+Ok) ifm−l = ±2.
The Taylor series expansion of the function (7) in a neighborhood of the center Ok, by

virtue of the first identity (8) and (6), has the form

ζ(z) = ε2(k−1)

(
1 +

∞∑
k=1

ζk(z −Ok)
3k

)
, z ∈ Ωk, k = 1, 2, 3, (9)

where all ζk are real.
Below, along with (7), the following function will be used:

µ(z) = 3
√
1− ζ(z)3. (10)

Function (10) maps the domain Ω onto the three-sheeted Riemann surface Rµ. Each hexagon
Ωk is mapped by this function onto the whole plane with three cuts along the rays {z : |z| >
1, arg z = 2πj/3}, j = 0, 1, 2 (see Fig. 5). The surface Rµ consists of these three sheets with
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Figure 5: The image of the domain Ω under the mapping by function (10)

crosswise glued sides of the cuts in accordance with the double periodicity of the functions
(7), (10).

Let us consider more thoroughly the properties of the function (10). In view of the nature
of the conformal mapping realized by the function (10), it follows that

µ(z) ≡ ε2µ(ε2z) ≡ ε2µ(ε2z) ≡ ε∓2µ(ε±2z). (11)

The Taylor series expansion of the function (10) in a neighborhood of the origin, by virtue
of the identities (11), has the form

µ(z) = z
∞∑
k=0

µkz
3k, (12)

where all µk are real and, in particular,

µ0 = 3
√
−ζ ′′′(0)/2 = −1.7666387502854504‘. (13)

Analytic continuation of the function µ(z) from Ω1 to Ωk (k = 2, 3) obtained by the Riemann-
Schwarz symmetry principle are

µ(z) = µ(ε2(k−1)(z + l)− l) = µ(ε2(k−1)(z −Ok), z ∈ Ωk. (14)

Due to (12), (14) we get

µ(z) = ε2(k−1)(z −Ok)

∞∑
k=0

µk(z −Ok)
3k, z ∈ Ωk, k = 1, 2, 3. (15)

At last, the function (10) maps conformally Rζ onto Rµ and

µ((ζ, 2)) = ε2µ((ζ, 1)), µ((ζ, 3)) = ε2µ((ζ, 1)), (16)

where (ζ, k) is the point ζ at the k-th sheet of Rζ .
Summarising, the function µ(ζ) has the following properties:

1. µ(ζ) has simple pole at infinity;
2. µ(ζ(z)) has simple zeros at all centers O1,2,3;
3. ℑµ((ε2k−1ξ, 1)) = 0 for ξ > 0, k = 1, 2, 3 and, hence, ℑ

(
ε2µ((ε2k−1ξ, 2))

)
= 0,

ℑ
(
ε2µ((ε2k−1ξ, 3))

)
= 0 due to (16).
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2.3 Solution of the problem (1)

Due to the double periodicity of the required function v(z) boundary conditions (2) are that

v1(t) = A1v2(t)−B1ε
2v2(t), t ∈ (A11, A12),

v2(t) = A2v3(t)−B2v3(t), t ∈ (A21, A24),

v3(t) = A3v1(t)−B3ε
2v1(t), t ∈ (A11, A16),

v1(t) = A1v2(t− 3l)−B1ε
2v2(t− 3l), t ∈ (A13, A14),

v2(t) = A2v3(t+ 3lε)−B2ε
2v3(t+ 3lε), t ∈ (A23, A26),

v3(t− 3lε) = A3v1(t)−B3v1(t), t ∈ (A12, A13),

v1(t) = A1v2(t− 3lε)−B1v2(t− 3lε), t ∈ (A15, A16),

v2(t) = A2v3(t− 3lε)−B2ε
2v3(t− 3lε), t ∈ (A22, A25),

v3(t− 3l) = A3v1(t)−B3ε
2v1(t), t ∈ (A14, A15).

(17)

Now we introduce the following function

w(ζ) = ζµ(ζ)v[z(ζ)] = wk(ζ), ζ ∈ Ωk, k = 1, 2, 3. (18)

This function is a piece-wise holomorphic function defined on the Riemann surface Rζ . Ac-
cording to (17) and the properties of the function µ(ζ) listed above, w(ζ) satisfies the identical
boundary conditions on all three sheets of the Riemann surface Rζ . Namely,

wk(ε
2k−1ξ) = Akwk+1(ε

2k−1ξ)−Bkwk+1(ε
2k−1ξ), ξ > 0, k = 1, 2, 3, (19)

where w4(ζ) ≡ w1(ζ). The remarkable fact is that the boundary conditions (19) exactly
coincide with conditions (A1) in [3], if the latter are rewritten in a complex form.

We require a piece-wise holomorphic solution of the problem (19) that vanishes at ζ = 0,
and all functions wj(ζ) should have at ζ = ∞ a singularity less than 3. The solution of
problem (19) was obtained in [3] in the same class of functions with a single difference only
in the condition at infinity, where wj(ζ) should have a singularity less than 3/2.

Just repeating all steps in finding a solution of problem (A1) in [3] we will obtain a
general solution of problem (19) as a linear combination of four linear independent particular
solutions, namely

v1(z) =
(
c1A

+
1 ζ

3α+−1 + c2A
+
1 ζ

2−3α+

+

+i (c3A
−
1 ζ

3α−−1 + c4A
−
1 ζ

2−3α−
)
)
/µ(ζ), z ∈ Ω1,

v2(z) =
(
c1A

+
2 λ

2
+ζ

3α+−1 + c2A
+
2 λ

2

+ζ
2−3α+

+

+i (c3A
−
2 λ

2
−ζ

3α−−1 + c4A
−
2 λ

2

−ζ
2−3α−

)
)
/µ(ζ), z ∈ Ω2,

v3(z) =
(
c1A

+
3 λ

2

+ζ
3α+−1 + c2A

+
3 λ

2
+ζ

2−3α+

+

+i (c3A
−
3 λ

2

−ζ
3α−−1 + c4A

−
3 λ

2
−ζ

2−3α−
)
)
/µ(ζ), z ∈ Ω3,

(20)

where cj are, at this stage, arbitrary real parameters; ζ = ζ(z) and µ(ζ) are determined
by the equations (7) and (10), respectively; the branch of the analytic function ζγ is fixed
onto each sheet of Rζ with a cut along the negative part of the real axis by the condition
| arg ζ| < π; the terms A+

j , A
−
j , j = 1, 2, 3 are given by the equations

A+
1 = −(1− c)(∆ + a)λ+ − (1 + a)(∆− c)λ+,

A+
2 = (1 + a)[(∆− c)λ+ + b(1− c)λ+],

A+
3 = (1− c)[(∆ + a)λ+ − b(1 + a)λ+];

(21)

A−
1 = (1 + c)(∆ + a)λ− + (1− a)(∆− c)λ−,

A−
2 = −(1 + a)[(∆− c)λ− + b(1 + c)λ−],

A−
3 = −(1− c)[(∆ + a)λ− − b(1− a)λ−];

(22)
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in its turn

a = ∆12, b = ∆23, c = ∆31, ∆pq =
ρp − ρq
ρp + ρq

; (23)

and
∆ =

√
−ab− bc− ac; (24)

λ± = eiπα
±
=

√
1∓∆

2
+

i

2

√
3±∆, α± =

1

π
arccos

√
1∓∆

2
. (25)

According (23), (24)

∆2 = −(ab+ bc+ ca) =
ρ1(ρ2 − ρ3)

2 + ρ2(ρ3 − ρ1)
2 + ρ3(ρ1 − ρ2)

2

(ρ1 + ρ2)(ρ2 + ρ3)(ρ3 + ρ1)
≥ 0,

1−∆2 =
(1− a2)(1− c2)

1 + ac
≥ 0,

and we take 0 ≤ ∆ ≤ 1. This constrains us to have 0 ≤ 3α+ − 1 ≤ 1/2, 1/2 ≤ 2− 3α+ ≤ 1
and −1/4 ≤ 3α− − 1 ≤ 0, 1 ≤ 2− 3α− ≤ 5/4.

2.4 Solution of the problem (1), (4)

The real parameters cj , j = 1, 2, 3, 4 in the general solution (22) should be defined using the
conditions (4).

In accordance with the above fixed branch of the function ζγ , we must take

ζ(O1) = 1, ζ(O2) = ε2 = exp(−2πi/3), ζ(O3) = ε2 = exp(2πi/3).

Then from (9), (12), (13), (15), (20) through (25) follows

resOk
vk(z) =

(
d1ℜA+

k − d4ℑA−
k + i(d2ℑA+

k + d3ℜA−
k )
)
/µ0, k = 1, 2, 3,

here d1 = c1+ c2, d2 = c1− c2, d3 = c3+ c4, d4 = c3− c4. Using the conditions (4) we obtain

d1ℜA+
k − d4ℑA−

k = Qkµ0/(2π), k = 1, 2, 3,
d2ℑA+

k + d3ℜA−
k = −Γkµ0/(2π), k = 1, 2, 3.

(26)

An important consequence of the equalities (26) is the following statement.
Theorem 1. The strengths, Qj, and the intensities, Γj, of vortexes–sinks/sources satisfy

the relations
Q1 +Q2 +Q3 = 0, ρ1Γ1 + ρ2Γ2 + ρ3Γ3 = 0. (27)

Proof. The first of these relations, evident from physical point of view, serves as an
indirect confirmation of the correctness of the solution (20). To prove both relations (27) it
is sufficient to show that

3∑
k=1

ℜA+
k = 0,

3∑
k=1

ℑA−
k = 0,

3∑
k=1

ρkℑA+
k = 0,

3∑
k=1

ρkℜA−
k = 0,

where A+
k , A

−
k are defined in (21), (22). To prove the last four equalities, one can use symbolic

munipulations in the Mathematica package [21].
We obtain the assertion of our theorem for Qj by summing the first three equations (26).

Multiplying the corresponding second equation (26) by ρk and summing up the results, we
obtain the second relation of the theorem.
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Remark 1. The conditions (27) are necessary and, as will be shown below, are sufficient
for the unique solvability of the problem (2), (4).

Remark 2. It is quite natural to assume that the first equality (27) will be valid for
an arbitrary location of vortex–sinks/sourcies in the hexagons Ωj . On physics ground, this
equality, or rather its generalization, holds for any double-periodic n-phase heterogeneous
structure. As for the second equality (27), we can assume that it also does not depend on the
vortex–sinks/sourcies location and geometry of the regular structure, but it requires strict
physical or mathematical proof.

The equations (26) with k = 1, 2 give two systems of linear equations with respect to
parameters d1, d4 and d2, d3. Both these systems are uniquely solvable as their determinants

D1 = ℜA+
2 ℑA

−
1 −ℜA+

1 ℑA
−
2 , D2 = ℑA+

1 ℜA
−
2 −ℑA+

2 ℜA
−
1

differ from zero if ρ2 ̸= ρ3. To prove this, one has to use (21) through (25) and present
D1,2 as second-order polynomials with respect to ∆ (up to non-vanishing positive factors).
Discriminants of the last polynomials are

−4ρ1ρ2ρ3(ρ2 − ρ3)
2(ρ1 + ρ2 + ρ3), −4ρ21(ρ2 − ρ3)

2(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),

respectively (we omit the tedious algebraic transformations that were carried out using sym-
bolic manipulations in the Mathematica package with further simplifications). Thus, both
discriminants are negative, this proves our assertion. The case ρ2 = ρ3 will be considered
later.

The parameters dj are

d1 =
µ0

2πD1

(
Q2ℑA−

1 −Q1ℑA−
2

)
, d4 =

µ0

2πD1

(
Q2ℜA+

1 −Q1ℜA+
2

)
,

d2 =
µ0

2πD2

(
Γ2ℜA−

1 − Γ1ℜA−
2

)
, d3 =

µ0

2πD2

(
Γ1ℑA+

2 − Γ2ℑA+
1

)
.

(28)

Then the required parameters cj are

c1 =
d1 + d2

2
, c2 =

d1 − d2
2

, c3 =
d3 + d4

2
, c4 =

d3 − d4
2

. (29)

This completes the solution of the problem posed.
The following statement is proved.
Theorem 2. If the solvability conditions (27) are met and ρ2 ̸= ρ3 then the problem (2),

(4) has the unique solution (20), where parameters cj are defined in (28), (29).

Concluding this section, we consider the limit case ρ1 = ∞, that is, the first phase Ω1 is
non-conducting and, naturally, Q1 = Γ1 = 0. Passing to the limit ρ1 → ∞ in the relations
(20) through (25) we obtain a = −c = ∆ = 1 and

v1(z) ≡ 0, z ∈ Ω1,
v2(z) = i

(
c1(1− b)ζ1/2 + c2e

−iπ/4ζ−1/4 + c3e
iπ/4ζ5/4

)
/µ(ζ), z ∈ Ω2,

v3(z) = i
(
−c1(1 + b)ζ1/2 + c2e

iπ/4ζ−1/4 + c3e
−iπ/4ζ5/4

)
/µ(ζ), z ∈ Ω3,

(30)

where real parameters cj must be defined from the conditions (4) for j = 2, 3. That results
in the following system of linear equations:

resO2v2(z) = −

(
i

[
(1− b)c1 +

√
2

2
(c2 + c3)

]
+

√
2

2
(c2 − c3)

)
/µ0 =

Q2 − iΓ2

2π
,

resO3v3(z) =

(
i

[
(1 + b)c1 −

√
2

2
(c2 + c3)

]
+

√
2

2
(c2 − c3)

)
/µ0 =

Q3 − iΓ3

2π
.

9



A comparison of the real parts in the last two equations gives the necessary solvability
condition: Q2 = −Q3, as of course it should on physical grounds. If Q2 = −Q3 then the last
system has the unique solution

c1 =
µ0(Γ2 − Γ3)

4π
, c2,3 =

µ0((1 + b)Γ2 + (1− b)Γ3 ± 2Q2)

4
√
2π

. (31)

Thus, the following theorem holds.
Theorem 3. If ρ1 = ∞ and Q2 = −Q3 then the problem (2), (4) has the unique solution

(30), where parameters cj are defined in (31).

2.5 Examples

This section provides examples of flow nets. First, streamlines (solid lines with arrows) and
equipotential lines (dashed lines) are represented in the entire structure. Below are given the
zoomed pictures of streamlines in phases 1,2,3, respectively.

Fig. 6 illustrates the case of no sinks/sources, but with two given vortices at the centers
O1, O2 and the corresponding generated vortex in O3.
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Figure 6: ρ1 = 1, ρ2 = 5, ρ3 = 0.2, Q1 = 0, Q2 = 0, Γ1 = 3, Γ2 = −3

The case of a sink in O1 and a source in O2 of equal strengths is presented in the Fig. 7.
Center O3 is the stagnation point on this occasion.

Fig. 8 shows the case of vortex–sinks/sources in O1, O2 such that Q1 = 5, Q2 = −3,
Γ1 = −3, Γ2 = 5. Here, in accordance with (27), we have a vortex–sink in the center of the
hexagon Ω3 with a strength Q3 = −2 and a very high intensity Γ3 = −470, which generates
three stagnation points in Ω1.

Two cases of a non conducting first phase are presented in Fig. 9.
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Figure 7: ρ1 = 1, ρ2 = 10, ρ3 = 0.1, Q1 = 1, Q2 = −1, Γ1 = 0, Γ2 = 0
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Figure 8: ρ1 = 1, ρ2 = 10, ρ3 = 0.1, Q1 = 5, Q2 = −3, Γ1 = −3, Γ2 = 5

3 Two equal neighboring phases: ρ2 = ρ3

The limiting case ρ2 = ρ3 for the problem (19) was considered in [3], by which we now get a
general solution of the form

v1(z) =
(
−
√
1− a(c1ζ

3α+−1 + c2ζ
2−3α+

)+

+i ρ2

ρ1

√
1 + a(c3ζ

3α−−1 + c4ζ
2−3α−

)
)
/µ(ζ), z ∈ Ω1,

v2(z) =
(
c1λ

3
+ζ

3α+−1 + c2λ
3

+ζ
2−3α+−

−i (c3λ
3
−ζ

3α−−1 + c4λ
3

−ζ
2−3α−

)
)
/µ(ζ), z ∈ Ω2,

v3(z) =
(
c1λ

3

+ζ
3α+−1 + c2λ

3
+ζ

2−3α+−

−i (c3λ
3

−ζ
3α−−1 + c4λ

3
−ζ

2−3α−
)
)
/µ(ζ), z ∈ Ω3,

(32)

where ζ(z) are µ(ζ) determined in (7) and (10), respectively;

λ± = eiπα
±
=

√
1∓ a

2
+

i

2

√
3± a, α± =

1

π
arccos

√
1∓ a

2
.
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Figure 9: ρ1 = ∞, ρ2 = 0.2, ρ3 = 5, Q2 = 2, Q3 = −2, and Γ2 = 0, Γ3 = 0 (left panel),
Γ2 = 2, Γ3 = −3 (right panel)

It might appear that there is a contradiction in formulae (32) with, apparently, v2(ζ) ̸=
v3(ζ), although physically v2(ζ) ≡ v3(ζ). But we have to recall that the branches of ζ3α

±−1

and ζ2−3α±
are fixed in the ζ–plane with the cut along the negative part of the real axis, i.e.

by the condition −π < arg ζ < π. With this condition in mind, it is not difficult to see that
limit values v2(ξ) and v3(ξ) coincide for all ξ < 0; thus v2(ζ) and v3(ζ) in (32) are analytical
continuations of each other through R−.

We assume that the necessary conditions (27) are fulfilled, and we fix the strengths of
vortexes–sources/sinks in the phases Ω2, Ω3. Due to (9), (15) the residues of the functions
(32) at O2, O3 are

2µ0resO2v2(z) = d2
√
1− a+ d3

√
3− a+ i(d1

√
3 + a− d4

√
1 + a),

2µ0resO3v3(z) = d2
√
1− a− d3

√
3− a− i(d1

√
3 + a+ d4

√
1 + a),

where d1 = c1+ c2, d2 = c1− c2, d3 = c3+ c4, d4 = c3− c4. Using (4), we obtain two systems
of linear equations with respect to parameters d2, d3 and d1, d4

d2
√
1− a+ d3

√
3− a = Q2µ0/π, d2

√
1− a− d3

√
3− a = Q3µ0/π;

d1
√
3 + a− d4

√
1 + a = −Γ2µ0/π, d1

√
3 + a+ d4

√
1 + a = Γ3µ0/π.

Both last systems are uniquely solvable. We find their solutions, and then, using (29), we
get the parameters cj

c1 =
µ0

4π

(
Γ3 − Γ2√
3 + a

+
Q2 +Q3√

1− a

)
, c2 =

µ0

4π

(
Γ3 − Γ2√
3 + a

− Q2 +Q3√
1− a

)
,

c3 =
µ0

4π

(
Γ2 + Γ3√
1 + a

+
Q2 −Q3√

3− a

)
, c4 =

µ0

4π

(
Γ2 + Γ3√
1 + a

− Q2 −Q3√
3− a

)
.

(33)

Two examples of flow nets, presented in Fig. 10, are obtained by the help of formulae
(32), (33).

Concluding this section, we first consider the limit case ρ2 = ρ3 and ρ1 = ∞. If ρ1 = ∞
then a = 1 and from (32) follows v1(z) ≡ 0 and

v2(z) = i
(
c1ζ

1/2 + c2e
−iπ/4ζ−1/4 + c3e

iπ/4ζ5/4)
)
/µ(ζ), z ∈ Ω2,

v3(z) = i
(
−c1ζ

1/2 + c2e
iπ/4ζ−1/4 + c3e

−iπ/4ζ5/4)
)
/µ(ζ) z ∈ Ω3,

(34)
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Figure 10: ρ1 = 1, ρ2 = ρ3 = 10, Q2 = 1, Q3 = 1, Γ2 = 1, Γ3 = −1 (left panel), ρ1 = 1,
ρ2 = ρ3 = 0.1, Q2 = −1, Q3 = 3, Γ2 = 0, Γ3 = 0 (right panel)

For this case Q1 = Γ1 = 0 and the first solvability condition (27) gives Q2 = −Q3. The
second condition (27) is fulfilled in the limit form, that is, ρ1Γ1 → −(ρ2Γ2 + ρ3Γ3) when
ρ1 → ∞ and Γ1 → 0. If Q2 = −Q3, then real parameters cj , defined from the conditions (4),
are equal

c1 =
(Γ2 − Γ3)µ0

4π
, c2 =

(Γ2 + Γ3 + 2Q2)µ0

4
√
2π

, c3 =
(Γ2 + Γ3 − 2Q2)µ0

4
√
2π

. (35)

Summing up the latest results, we formulate the following statement.
Theorem 4. If ρ2 = ρ3, ρ1 < ∞ (ρ1 = ∞) and the solvability conditions (27) are

satisfied (Q2 = −Q3) , then the unique solution of the problem (2), (4) is defined by the
formulae (32), (33) ((34), (35)).

The distribution of streamlines and equipotentials, plotted in accordance with formulae
(34), (35) is shown in the Fig. 11 for two sets of parameters.

Figure 11: ρ1 = ∞, ρ2 = ρ3 = 5, Q2 = −2, Q3 = 2, Γ2 = 0, Γ3 = 0 (left panel), Q2 = 0,
Q3 = 0, Γ2 = −4, Γ3 = 2 (right panel)

At last, if ρ1 = ρ2 = ρ3, that is, we have a homogeneous medium with a flow generated
by three sets of doubly periodically distributed vortex–sinks/sourses. On this occasion a =

13



b = c = 0 and from the formulae (20) through (25) we obtain

v1(z) = v2(z) = v3(z) =
C1 + C2ζ

µ(ζ)
.

Here C1, C2 are arbitrary complex parameters that must be determined through the condi-
tions (4). In accordance with (15) we obtain

µ0resOk
vk(z) = C1ε

−2(k−1) + C2ε
2(k−1) =

µ0(Qk − iΓk)

2π
, k = 1, 2, 3.

Summing up the last three equations, we obtain the following necessary and sufficient solv-
ability conditions:

Q1 +Q2 +Q3 = 0, Γ1 + Γ2 + Γ3 = 0,

which correlate with the assertions of Theorem 1. If these conditions are met, then our
system has the unique solution

C1,2 = ± iµ0

2
√
3π

[
(Q1 − iΓ1)e

∓iπ/3 + (Q2 − iΓ2)
]
.

The distribution of flow nets in a homogeneous medium is shown in Fig. 12 for two special
cases.

Figure 12: ρ1 = ρ2 = ρ3 = 1, Q1 = −1, Q2 = 2, Γ1 = −1, Γ2 = −1 (left panel) Q1 = 0,
Q2 = −2, Γ1 = 0, Γ2 = −2 (right panel)

4 Concluding remarks

The present work is a direct continuation of our previous results obtained for the four-phase
rectangular ([2]) and three-phase diamond ([3]) checkerboards. The structure we consider
here, has three distinct phases, and is composed of regular hexagons. Unlike all previously
published works on doubly periodic n-phased structures, we considered a case with a flow
generated not by a single dipole at infinity, but by three sets of identical in each phase vortex–
sinks/sources. The same basic idea as in the above cited papers was used to find a solution
for a hexagonal tessellation. That is, we again use conformal mappings to reduce a doubly
periodic R-linear conjugation problem to RH problem for three sectors posed on three-sheeted
Riemann surface. It so fell out that the last problem has identical boundary conditions on all
three sheets. Moreover, these conditions exactly coincided with the corresponding conditions
in [3]. This made it possible to find a general solution to the original boundary value problem

14



(1), and then its specific solution that satisfies the additional conditions (4). The necessary
and sufficient solvability conditions (27) obtained in the solution process are, from our point
of view, of independent interest.

The following special cases are considered: the case when two of the three phases have the
same resistivities; the case of one non-conducted phase; the case of homogeneous material.
Explicit solutions are derived for all these cases. As such, these solutions are the first and
only explicit ones for field in doubly-periodic heterogeneous structures generated by the
corresponding sets of vortexes/sinks/sources.

It would be interesting to generalize the solved problem in the case of arbitrary locations of
sinks and sources in each elementary cell. Also the case of a flow in a hexagonal checkerboard,
generated by a single dipole at infinity, is our long-standing goal.
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