

УДК 510.5, 512.565.2

СПЕКТРЫ СТЕПЕНЕЙ СТРУКТУР

© 2018 г. И. Ш. КАЛИМУЛЛИН, В. Л. СЕЛИВАНОВ, А. Н. ФРОЛОВ

Аннотация. В обзоре обсуждаются спектры вычислимости счетных структур, дающие естественную меру сложности невычислимых структур. Понятие спектра структуры является основным инструментом исследования алгоритмических свойств счетных структур. Наряду с обзором имеющихся результатов приведем доказательства нескольких новых результатов, иллюстрирующих вариант метода интерпретаций, являющийся основным методом данного направления. Обсуждаются некоторые открытые вопросы.

Ключевые слова: структура, вычислимая структура, спектр структуры, интерпретация.

AMS Subject Classification: 03D45, 03C57

СОДЕРЖАНИЕ

	Введение	23
1.	Об описании спектров структур	25
2.	Универсальные классы структур	27
3.	Неуниверсальные классы структур	30
4.	Классы, универсальность которых не известна	33
	Список литературы	37

Введение

Цель статьи — познакомить широкий круг математиков с программой исследования алгоритмических свойств счетных алгебраических структур из ряда естественных классов (таких как группы, поля, линейные порядки и т. д.), известной как теория спектров структур. Статья не является исчерпывающим обзором теории спектров, но мы надеемся дать адекватное представление о лежащих в основе этой теории идеях, методах и результатах. Предполагается знакомство читателя с основами теории вычислимости, мы используем без напоминания стандартную терминологию и обозначения из [18,68]. Также предполагаем известными терминологию из логики и теории моделей (см. [3,13]).

Изучение алгоритмических свойств структур оказалось очень богатым и глубоким. Оно представляет большой интерес как для теории вычислимости и ее приложений, так и для теории моделей и ее приложений. В данной работе все рассматриваемые сигнатуры конечны, а все структуры (за исключением особо оговариваемых случаев) — счетно бесконечны. Изучение счетных структур принципиально для логики первого порядка и теории моделей, в то время как изучение несчетных структур требует привлечения аксиоматической теории множеств.

Существует несколько естественных подходов к определению алгоритмической сложности структуры или класса структур (см., например, [62]). Фундаментальный и концептуально простой

Работа И. Ш. Калимуллина выполнена при поддержке Министерства образования и науки РФ (проект № 1.451.2016/1.4). Работа А. Н. Фролова выполнена при поддержке Российского фонда фундаментальных исследований (проект № 16-31-60077).