
International Journal of Computational Intelligence Systems
Vol. XX(Z); Month (Year), pp. xx–yy

DOI: 10.1080/XXXXXXXXXXXXXX; ISSN XXXX–XXXX online
https://www.atlantis-press.com/journals/ijndc

Journal of Robotics, Networking and Artificial Life
Vol. 5(3); December (2018), pp. 184–189

DOI: 10.2991/jrnal.2018.5.3.9; ISSN 2405-9021 print; 2352-6386 online
https://www.atlantis-press.com/journals/jrnal

* Corresponding author. Email: evgeni.magid@gmail.com

Research Article

ROS-based Multiple Cameras Video Streaming for a
Teleoperation Interface of a Crawler Robot

Ramil Safin1, Roman Lavrenov1, Edgar A. Martínez-García2, Evgeni Magid1,*

1Intelligent Robotic Systems Laboratory, Intelligent Robotics Department, Higher Institute for Information Technology
and Intelligent Systems, Kazan Federal University, Kazan 420008, Russian Federation
2Robotics Laboratory, Department of Industrial Engineering and Manufacture, Institute of Engineering and Technology,
Universidad Autónoma de Ciudad Juárez, Chihuahua 32310, Mexico

1. INTRODUCTION

A variety of applications in robotics employ digital cameras for the
purposes of 3D scene reconstruction, obstacle avoidance [1], object
detection and tracking [2], visual simultaneous localization and
mapping (SLAM) [3], path planning [4], human–robot interaction,
teleoperation and in urban search and rescue operations [5], etc.
Most of the up-to-date solutions require to use more than just a
single on-board camera, for example, stereo SLAM with two mon-
ocular cameras [6] and multi-camera rig setup to achieve higher
accuracy results.

Capturing video frames from a camera typically needs to be accom-
plished in real-time, or with an acceptably low latency. However,
in case of mobile robotic systems performance issues may arise.
Considering that a robot is equipped with multiple cameras, system
resources consumption increases, which leads to the decreased
robot operation time.

Moreover, cameras tend to distort captured images. Distortion
influences the accuracy of measurements [7], e.g., straight lines
become curved. Therefore, camera calibration is a necessary step
in robot vision.

In our work we used a Russian crawler-type mobile robot Servosila
Engineer [8]. It is equipped with four on-board cameras that are
located on its head and has an application programming interface
(API) for video streaming purposes. However, the manufacturer’s
API does not enable to capture and receive video frames from all

cameras at once – only one camera is available at a time within the
original graphical user interface. Furthermore, Servosila Engineer’s
cameras are featured with essential radial distortions, which could
be removed only through a calibration procedure. Therefore, we
developed a special video capturing robot operating system (ROS)
package for the robot. It enables to stream video from all cam-
eras of the robot simultaneously in real-time. Camera calibration
was also accomplished in order to increase the accuracy of visual
sensor-based algorithms, which will be implemented in the future.

2. SERVOSILA ENGINEER MOBILE ROBOT

In this work we used the Russian crawler-type mobile robot Servosila
Engineer (Figure 1). It is designed to be use in urban search and rescue
operations, demining, and as a research and education platform.

Vision system of the robot consists of four cameras that are located
on the robotic head (Figure 2): a stereo pair and an optical zoom
camera are on the front side of the robotic head and one monocu-
lar rear view camera (Table 1). Additionally, there is a torch on the
front side of the head.

In its original configuration the robot operated under Ubuntu 14
operating system (OS), but it was upgraded to Ubuntu 16 OS in
order to use an up-to-date ROS distribution, ROS Kinetic. Servosila
Engineer’s on-board computer has no dedicated graphics card and
thus only an onboard Intel HD Graphics 4000 is available. The
CPU is an Intel Core i7-3517UE @ 1.7–2.4 GHz × 2/4 (two cores,
four threads). Robot has 4 GB DDR3 random access memory stick
functioning at 1333 MHz.

A RT I C L E I N F O
Article History

Received 1 October 2018
Accepted 22 October 2018

Keywords

Video streaming
mobile robot
ROS package
real-time
camera calibration

A B S T R AC T
Digital cameras are being widely used in robotics in 3D scene reconstruction, simultaneous localization and mapping (SLAM),
and other applications, which often require real-time video stream from multiple cameras. In a case of a mobile robotic system
with limited hardware capabilities performance issues may arise. In this work we present a real-time video streaming robot
operating system (ROS) package for our crawler-type mobile robot Servosila Engineer, which has four on-board cameras.
Compared to OpenCV based solution our package demonstrates less resource consumption.

© 2018 The Authors. Published by Atlantis Press SARL.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

https://www.atlantis-press.com/journals/jrnal
mailto:evgeni.magid%40gmail.com?subject=
http://creativecommons.org/licenses/by-nc/4.0/

 R. Safin et al. / Journal of Robotics, Networking and Artificial Life 5(3) 184–189 185

	 ·	 Open a device (a camera).
	 ·	 Define device properties (variable values).
	 ·	 Perform a video capturing loop (retrieve frames).
	 ·	 Close the device (stop capturing).

Communication with a device (e.g., one of the robot’s cameras) is
executed by means of input/output (I/O) control requests – ioctl. It
is a Linux system call, which allows to manage device parameters
(frame rate, resolution, pixel format, etc.) and capture video frames.

Initially the device is needed to be opened for reading and writ-
ing operations. Further, device capabilities are queried in order to
correctly setup the camera for streaming. Data from the device’s
internal buffer comes in the supported raw image format. Then
device buffers are allocated in order to be able to exchange data
between the device and an application (a program) using one of the
streaming I/O methods. In this work we used memory mapping
I/O approach, which enables to eliminate memory copies from
the kernel space (device’s driver) to the user space (our program).
The program and the device’s driver exchange pointers to captured
video frames to make them directly available within the applica-
tion. Querying buffers allow to retrieve all necessary information
about requested buffers, e.g., size and location of the allocated
memory, number of buffers. Capturing frames loop (streaming) is
constituted of queue and dequeue operations (Figure 4).

The manufacturer’s original API enables to control the robot and
receive video frames from one of its cameras at a time, i.e., only from a
single active camera. Changing the active camera to the other camera
could be done in runtime with a special command through the API.

3. RELATED WORK

In this section, we describe the development of a real-time video
streaming ROS package using low-level Video4Linux2 API.

3.1. Video4Linux2 Video Capturing Layer

Video4Linux2 (V4L2) is an audio and video capturing API in Linux
systems. It is especially effective in capturing video in real-time due
to its close integration with the Linux kernel [9]. It was preinstalled
within the OS by the robot’s manufacturer and V4L2 was used for
capturing video in the original API of the robot. Typical workflow
with V4L2 is as follows (Figure 3):

Table 1 | Properties of the Servosila Engineer’s cameras

Camera
Properties

Pixel format Resolution Frame rate

24× optical zoom YUYV 4:2:2 1280 × 720 50
Rear view/stereo pair 8-bit Bayer 744 × 480 15/25/30/60

 644 × 480

Figure 1 | Servosila Engineer crawler-type mobile robot (front view).
Robotic head with four cameras and the LiDAR is attached to the 4DoF
arm manipulator.

Figure 2 | Servosila Engineer’s front and rear view cameras

Figure 3 | Basic Video4Linux2 API video capturing workflow. Initial
buffer allocation and capturing loop are highlighted with dashed lines

Figure 4 | Capturing frames from a V4L2 device: requesting a recent video
frame (query buffer) and retrieving it from the device (Dequery buffer)

186 R. Safin et al. / Journal of Robotics, Networking and Artificial Life 5(3) 184–189

The process of streaming is as follows:

	 ·	 Put the buffer into the device’s incoming queue (query buffer).
	 ·	 Wait for the device to fill in the buffer with data, i.e., capture a

video frame.
	 ·	 Retrieve the buffer from the outgoing queue (dequery buffer).

Several issues were faced at the development stage. The most
important one is an inability to get frames captured time (time-
stamp). This issue was sorted out by placing the information
extraction step after the queuing and before the dequeuing
operations.

3.2. ROS Package

The development of the video capturing (streaming) ROS package
was conducted under ROS Kinetic distribution.

Our ROS package makes use of the developed V4L2 video stream-
ing layer in order to capture video frames from the robot’s cam-
eras in real-time. Following ROS conventions of publishers and
subscribers, one publisher can deliver data to multiple subscribers
through topics, and the system becomes modular as it consists of
multiple interchangeable parts. Thus, our video streaming package
is comprised of publishers (one publisher for each camera), and we
can easily integrate camera calibration for either stereo pair or each
camera individually. Figure 5 demonstrates the high-level architec-
ture of the developed ROS package.

Robot operating system publisher transmits video frames and
camera information (such as frame resolution and pixel format) to
subscribers, e.g., camera calibration node. Internally it uses V4L2
layer (Section 3.1) in order to get the most recent frames from a
camera.

Parameters that are used in order to control streaming parameters
of the ROS publisher node include:

	 ·	 Frame rate – number of frames captured per second (e.g., 60 fps).
	 ·	 Frame resolution – width and height of images in pixels (e.g.,

640 × 480).

Figure 5 | High-level architecture of the developed video streaming ROS
package. ROS publisher delivers video frames and camera information to
subscribers from a camera using V4L2

	 ·	 Image format, or pixel format (e.g., “yuyv422”).
	 ·	 Path to the camera, or URL (e.g., “/dev/video0”).

To run the video streaming node rosrun command is used along
with defined camera parameters. ROS launch file was created for a
convenient usage, so it is possible to start streaming from multiple
cameras and view captured frames (image_view ROS package).

4. EXPERIMENTS

In this section, we provide performance evaluation results of the
created ROS package. Comparison with an alternative solution
for video streaming, OpenCV based ROS package, is presented.
Robot’s stereo vision system calibration is accomplished using
circle grid and checkerboard pattern calibration techniques.

4.1. ROS Package Benchmark

For a mobile robot in order to be able to operate using its battery
it is essential to minimize power consumption. Launched pro-
grams and applications consume system resources, such as CPU
and memory, which are strictly limited in case of a mobile robot,
hence it should be considered. In our benchmark we used only one
camera of the Servosila Engineer, the rear view monocular camera.
In order to estimate CPU and memory consumption pidstat util-
ity was utilized. It outputs both intermediate and final results.
Measurements were taken in the idle (no subscribers) and non-idle
(with one subscriber) modes (Figure 6).

As an alternative we used an OpenCV based video streaming
ROS package – video_stream_opencv [10]. However, in our
system it did not work due to unsupported raw image format
issues in OpenCV 3. Thus, it was decided to accomplish tests
with an older version, OpenCV 2.4. In this scenario it was
not possible to switch from an RGB to the raw image captur-
ing mode (without image format conversion). The developed
ROS package shows encouraging results in comparison to the
OpenCV based one (Figure 7).

Figure 6 | Average CPU usage of our ROS package from the monocular
rear view camera in the idle and non-idle modes

 R. Safin et al. / Journal of Robotics, Networking and Artificial Life 5(3) 184–189 187

Statistics were estimated by the same pidstat utility for the rear view
monocular camera of the robot. An average CPU usage of our ROS
package implementation in the idle mode was close to 0 (0.4%).
With a subscriber (non-idle mode) the resulting CPU usage was
about 4.4%. As for the OpenCV based solution, video_stream_
opencv demonstrated values of 31.6% in the idle and 35.1% in the
non-idle modes. Thus, in the idle mode the OpenCV based ROS
package continues to load the CPU.

Memory consumption is negligible in both cases – the buffer
size is equal to four frames. In our package we can adjust the
buffer size. However, even if it is set to the lower values, there is
no benefit from it in terms of memory consumption and perfor-
mance. Higher values only increase memory consumption and
capturing latency.

4.2. Stereo Pair Calibration

Ideally, cameras of a stereo pair should be perfectly aligned along
the same horizontal line passing through the principal points.
Misalignment can lead to the potential growth of the error in
measurements [11]. However, in some cases there are various
hardware imperfection issues, which could present initially or
appear due to severe operation conditions. Moreover, distor-
tion issues do not enable to implement some algorithms, which
require accurate measurements. In our case there is a radial dis-
tortion (Figure 8) with straight lines in the 3D world being dis-
torted into curved ones. Radial distortion is spreading starting
from the image’s principal point.

Stereo vision system of our robot is comprised of two monocular
cameras DFM 22BUC03-ML that are located in the robot’s head
(Figure 2 – left image). Left and right cameras of the stereo pair are
displaced relative to each other with the right camera being higher.
Figure 9 demonstrates distortion and displacement resulting issues
of the stereo pair.

Camera calibration consists of extrinsic and intrinsic parameters
estimation along with calculation of distortion coefficients [12].

Figure 7 | Average CPU usage of our ROS package in comparison to the
video_stream_opencv in the idle and non-idle modes for the rear view
monocular camera

Figure 8 | A picture taken from the front left monocular camera of the
Servosila Engineer mobile robot (grayscale)

Figure 9 | Pictures taken from the left and right cameras of the robot’s
stereo pair (the center of the right camera is higher than the left camera)

Intrinsic and extrinsic, parameters enable to transform objects
in the 3D world into the 2D image plane. For the stereo pair
we need to calculate their relative (spatial) relation. Obtained
parameters are used to align images from both cameras along
the same plane (stereo rectification). In our case we utilized
2D patterns, so the process of calibration included tracking of
a planar pattern, which was located at different orientations rel-
atively to the camera.

In calibration with a checkerboard pattern and circle grid camera_
calibration ROS package was used [13]. It subscribes to left and
right camera topics each of which conveys video frames and camera
information. In order to stream from the stereo pair our developed
node was used. First, calibration with a checkerboard pattern was
executed (Figure 10).

Calibration with a checkerboard pattern showed acceptable accu-
racy with the best result of 0.33 pixels error. Next, calibration with
a 6 × 6 circle grid was carried out (Figure 11). In this case the best
result was the error of 0.18 pixels. However, even though the dif-
ference between circle grid and checkerboard pattern calibration
results is invisible to a human eye, measurements accuracy may
increase when using a circle grid.

Calibration process of the misaligned stereo pair resulted in partial
information loss. Figure 12 demonstrates how visual information
could be lost after the distortion elimination and rectification pro-
cesses. Approximately 10% of pixels were lost.

The final result of the stereo pair calibration is shown in Figure 13.
Calibration corrected the misalignment of the stereo pair cameras.
Radial distortion was mitigated and curved lines from the initial
images became straight.

188 R. Safin et al. / Journal of Robotics, Networking and Artificial Life 5(3) 184–189

Figure 12 | Loss of data after calibration of the robot’s stereo pair
(rectification process). Black areas represent the lost pixels

Figure 13 | Servosila Engineer’s stereo pair calibration result (rectified and
undistorted images). Part of loss pixels is truncated

5. CONCLUSION AND FUTURE WORK

In this work we developed the real-time video capturing ROS
package based on Video4Linux2 multimedia API for a low-level
interaction with Servosila Engineer’s cameras. The created ROS
package demonstrated good results in terms of CPU usage and
memory consumption enabling to capture and stream video in
real-time. Comparison with the alternative OpenCV based ROS
package using one monocular rear view camera demonstrated that
our solution both in idle and non-idle modes, when there are no
clients and there is a client respectively, performs better in terms of
CPU usage: 0.4% vs 31.6% and 4.4% vs 35.1% in the idle and non-
idle modes respectively.

Using created ROS package robot’s stereo pair calibration in the
presence of hardware imperfection was executed. A circular grid
and checkerboard pattern were used. A circle grid based calibration
showed more accurate results compared to a checkerboard pattern:
0.18 vs. 0.33-pixel error. As a result of calibration approximately
10% of pixels were lost due to the rectification and undistortion
processes. Unfortunately, the loss of data in inevitable during such
procedures. As a part of our future work, we plan to develop an real
time streaming protocol (RTSP) server for teleoperation purposes.

ACKNOWLEDGMENTS

This work was partially supported by the Russian Foundation for
Basic Research (RFBR) (project ID 18-58-45017). Part of the work
was performed according to the Russian Government Program of
Competitive Growth of Kazan Federal University.

REFERENCES

 [1] C. Brand, M.J. Schuster, H. Hirschmüller, M. Suppa, Stereo-vision
based obstacle mapping for indoor/outdoor SLAM, 2014 IEEE/
RSJ International Conference on Intelligent Robots and Systems,
IEEE, Chicago, IL, USA, 2014, pp. 1846–1853.

 [2] A. Buyval, A. Gabdullin, R. Mustafin, I. Shimchik, Realtime vehicle
and pedestrian tracking for Didi Udacity self- driving car challenge,
2018 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, Brisbane, QLD, Australia, 2018, pp. 2064–2069.

 [3] A. Buyval, I. Afanasyev, E. Magid, Comparative analysis of
ROS-based monocular SLAM methods for indoor navigation,
Proceedings of the Ninth International Conference on Machine
Vision 10341, 2016, p. 103411K.

 [4] E. Magid, T. Tsubouchi, E. Koyanagi, T. Yoshida, Static bal-
ance for rescue robot navigation: Losing balance on purpose
within random step environment, 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, Taipei,
Taiwan, 2010, pp. 349–356.

 [5] F. Dai, Q. Kang, Y. Yue, P. Xie, Research on visualized search
and rescue robot, J. Robot. Network. Artif. Life 3 (2016),
201–204.

 [6] Y. Ru, H. Du, S. Li, H. Chang, Action recognition based on binoc-
ular vision, J. Robot. Network. Artif. Life 4 (2017), 5–9.

 [7] Z. Zhang, Camera calibration with one-dimensional objects,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
IEEE Computer Society, IEEE, Washington, DC, USA, 2004,
pp. 892–899.

Figure 10 | Calibration of the robot’s stereo pair with a checkerboard
pattern in ROS (images are shown in grayscale)

Figure 11 | Calibration of the robot’s stereo pair with a circle grid in ROS
(images are shown in grayscale)

http://dx.doi.org/10.1109/iros.2014.6942805
http://dx.doi.org/10.1109/iros.2014.6942805
http://dx.doi.org/10.1109/iros.2014.6942805
http://dx.doi.org/10.1109/iros.2014.6942805
http://dx.doi.org/10.1109/icra.2018.8460913
http://dx.doi.org/10.1109/icra.2018.8460913
http://dx.doi.org/10.1109/icra.2018.8460913
http://dx.doi.org/10.1109/icra.2018.8460913
http://dx.doi.org/10.1117/12.2268809
http://dx.doi.org/10.1117/12.2268809
http://dx.doi.org/10.1117/12.2268809
http://dx.doi.org/10.1117/12.2268809
http://dx.doi.org/10.1109/iros.2010.5649361
http://dx.doi.org/10.1109/iros.2010.5649361
http://dx.doi.org/10.1109/iros.2010.5649361
http://dx.doi.org/10.1109/iros.2010.5649361
http://dx.doi.org/10.1109/iros.2010.5649361
http://dx.doi.org/10.2991/jrnal.2016.3.3.13
http://dx.doi.org/10.2991/jrnal.2016.3.3.13
http://dx.doi.org/10.2991/jrnal.2016.3.3.13
http://dx.doi.org/10.2991/jrnal.2017.4.1.2
http://dx.doi.org/10.2991/jrnal.2017.4.1.2
http://dx.doi.org/10.1109/tpami.2004.21
http://dx.doi.org/10.1109/tpami.2004.21
http://dx.doi.org/10.1109/tpami.2004.21
http://dx.doi.org/10.1109/tpami.2004.21

 R. Safin et al. / Journal of Robotics, Networking and Artificial Life 5(3) 184–189 189

[11] W. Zhao, N. Nandhakumar, Effects of camera alignment errors
on stereoscopic depth estimates, Pattern Recognit. 29 (1996),
2115–2126.

[12] J. Suriansky, M. Cmarada, Analysis of methods for camera cal-
ibration in 3D scanning systems, Annals of DAAAM for 2012
& Proceedings of the 23rd International DAAAM Symposium,
Curran Associates, Inc., NY, USA, 2012, pp. 365–368.

[13] camera_calibration ROS package Wiki, Available from: http://
wiki.ros.org/camera_calibration (Accessed 22 August 18).

 [8] R. Safin, R. Lavrenov, Implementation of ROS package for simul-
taneous video streaming from several different cameras, 2018
International Conference on Artificial Life and Robotics, Oita,
Japan, 2018, pp. 220–223.

 [9] Linux Media Subsystem Documentation – Video for Linux API,
Available from: https://linuxtv.org/downloads/v4l-dvb-apis/
uapi/v4l/v4l2.html (Accessed 22 August 18).

[10] OpenCV based video stream ROS package, Available from: http://
wiki.ros.org/video_stream_opencv (Accessed 22 August 18).

Authors Introduction

Professor Evgeni Magid

Professor Evgeni Magid is a Head of
the Intelligent Robotics Department
and a Head of Intelligent Robotic
Systems Laboratory at the Higher
School of Information Technology
and Intelligent Systems, Kazan
Federal University, Russia.
He obtained his Ph.D. degree at
the Intelligent Robot Laboratory,

University of Tsukuba, Japan in 2011. Currently, his main inter-
ests are urban search and rescue, swarm robotics, and robotics
education.

Dr. Edgar A. Martínez-García

Dr. Edgar A Martínez-García is an
Associate Professor and Head of the
Robotics Laboratory at the Institute
of Engineering and Technology,
Universidad Autonoma de Ciudad
Juarez, Mexico.
He obtained his Ph.D. degree at
the Intelligent Robot Laboratory,
University of Tsukuba, Japan in
2005. Currently, his main interests in

robotics are mathematical modelling, dynamic control, under-
actuated systems, and biomechanics design.

Mr. Roman Lavrenov

Mr. Roman Lavrenov is a lecturer
and research associate at Intelligent
Robotic Systems Laboratory, Higher
School of Information Technology
and Intelligent Systems, Kazan
Federal University, Russia. His main
interests are path planning, robot
operating system, and autonomous
mobile robots.

Mr. Ramil Safin

Mr. Ramil Safin is a master student
and research assistant at Intelligent
Robotic Systems Laboratory, Higher
School of Information Technology
and Intelligent Systems, Kazan
Federal University, Russia. His
main interest is computer vision for
robotic applications.

http://dx.doi.org/10.1016/s0031-3203%2896%2900051-9
http://dx.doi.org/10.1016/s0031-3203%2896%2900051-9
http://dx.doi.org/10.1016/s0031-3203%2896%2900051-9
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration
https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/v4l2.html
https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/v4l2.html
https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/v4l2.html
http://wiki.ros.org/video_stream_opencv
http://wiki.ros.org/video_stream_opencv

