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Abstract

Let M be a von Neumann algebra of operators on a Hilbert space H and 7 be a faithful
normal semifinite trace on M. Let p(T), ¢ > 0, be a rearrangement of a 7-measurable
operator T'. Let us consider a T-measurable operator A, such that u¢(A) > 0 for all ¢ > 0
and assume that ps(A)/pue(A) — 1 as ¢ — oo. Let a 7-compact operator S be so that
the operator I + S is right invertible, where I is the unit of M. Then, for a 7-measurable
operator B, such that A = B(I + S), we have p(A)/p(B) — 1 as t — oo. It is an analog
of the M.G. Krein theorem (for M = B(H) and 7 = tr, theorem 11.4, ch. V [Gohberg I.C.,
Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations
of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.] for
T-measurable operators.
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Introduction

Let M be a von Neumann algebra of operators on a Hilbert space H and 7
be a faithful normal semifinite trace on M. In theorem 3.5, we prove an analog of
the M.G. Krein theorem (for M = B(H) and 7 = tr, theorem 11.4, ch. V, [1]) for 7-
measurable operators. We also describe asymptotics of the generalized singular numbers
for a product of almost commuting 7-measurable operators.

1. Notation, definitions, and preliminaries

Let M be a von Neumann algebra of operators on a Hilbert space H. Let MP" be
the lattice of projections in M. Let I be the unit of M. Let P+ =TI—P for P € MP*.
Let M be the cone of positive elements in M.

A mapping ¢ : MT — [0,+0o0] is called a trace, if o(X +Y) = o(X) + p(Y),
©(AX) = Mp(X) for all X, Y € M*T, X >0 (moreover, 0- (+00) =0) and ¢(Z*Z) =
o(ZZ*) for all Z € M. A trace ¢ is called as follows: faithful if p(X) > 0 for all
X e Mt X # 0; finite if p(X) < +oo for all X € M™T; semifinite if ¢(X) =
sup{e(Y): Y e MT, Y < X, ¢(Y) < +oo} for every X € M*; normal if X; / X
(X0, X € MF) = o(X) = supp(X,).

An operator on H (not necessarily bounded or densely defined) is said to be affi-
liated with a von Neumann algebra M if it commutes with any unitary operator from
the commutant M’ of the algebra M. A self-adjoint operator is affiliated with M if
and only if all the projections from its spectral decomposition of unity belong to M.

Let 7 be a faithful normal semifinite trace on M. A closed operator X of everywhere
dense in ‘H domain D(X) and affiliated with M is said to be 7-measurable if there
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exists such a projection P € MP" for any € > 0 that PH C D(X) and 7(P+) < e.
The set M of all 7-measurable operators is a *-algebra under transition to the adjoint
operator, multiplication by a scalar, and strong addition and multiplication operations
defined as closure of the usual operations [2, 3].

If X is a closed densely defined linear operator affiliated with M and | X| = v X*X |
then the spectral decomposition P|X|(~) is contained in M and X belongs to M if
and only if there exists a number A € R, such that 7(PIXI((\,+0))) < +oo. Let
u:(X) denote the rearrangement of the operator X € Mv, i.e., the nonincreasing right
continuous function u(X): (0,00) — [0,00) given by the formula

pe(X) = inf{||XP|: PeMP, 7(Pr)<t}, t>0.

Then, p:(X) = inf{s > 0: A\ (X) < t}, where \;(X) = 7(PI¥!((s,00))) is the distribu-
tion function of X . The set of T-compact operators My = {X € M : . liin u(X) =0}

is an ideal in M [4].

Lemma 1 (see [4-6]). Let X, Y € M. Then
) e(X) = (| X]) = pu (X*) for all £ 0;
) pst(X 4+Y) < ps(X) + e (Y) for all s,t>0;
) et (XY) < (XY for all 5, ¢ > 0;
) (| X[P) = pe(X)P for all p, t > 0.

If M =B(H), i.e., the *-algebra of all linear bounded operators on H, and 7 = tr

is the canonical trace, then M coincides with B(H). In this case, M is the compact
operators ideal on ‘H and

:ut(X) - Z Sn(X)X[n—l,n)(t)a t>0,
n=1

where {s,(X)}1> is a sequence of an operator X s-numbers [1]; here, x4 is the in-

dicator function of a set A C R.

2. A generalization of the M.G. Krein theorem
for T-measurable operators

Lemma 2. The following conditions are equivalent for a nonincreasing function
f:(0,00) = (0,00)

t

(i) there exists tlim ff((i)) =1 for some number 0 < a#1;
bt

(ii) there exists tlim J;((t)) =1 for every number b > 0.

Proof. (i)=-(ii). We have

-l ] e 55

1= lim

t=oo f(t)

S0 fa
= ) T T W

where v = at for all ¢t > 0. Hence, we assume that a, b > 1.
Case 1: 1 < b < a. Then, we have

fla™t) _ F0)
IO

f(at)

forall ¢t>0
f(@)

>
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and lemma follows from (1) and the squeeze theorem.

Case 2: 1 < a < b. Then, for k = min{nEN: <a} and for all £ > 0, we

have

Fxt) f (st
o 710 (%) f<t)f<<b2> (f(t) >Z
(@) s

b b\ b f(t)
(@) o)
and lemma follows from relations (1) and

b b
TR ) (@)
lim =lim —%—=---= lim ——— =1,
t—oo b t—oo b t—oo b
(@) () (=)

combined with theorem on the limit of product of functions and the squeeze theorem.
Lemma is proved.

an+1
b
fatty fo) fon L (t>
b

O
Example 1. 1) The conditions of lemma 2 hold if there exists 75lim f(t) =2 >0.

2) Let us consider f(t) for all ¢ > 0. Then, there exists 75lim ft) =

f2t)

- fo
t

M = {@} as t — oo. Induction helps us to prove the same result for n-

log(1 + 2t)

00
1
it ted ti n(t) =
iterated function fn(t) loglog - - -log(e™~! + t)

3) If functions f, g satisfy the conditions of lemma 2, then, for the functions f,.(t) =
t+p

fot), for(t) = F(t+p), brp(t) = /f(U)du, f@), f7 (0 <p < o0), log(l+ f),

t

1
~ log(1+1)

2 = 0 and the conditions of lemma 2 also hold by the I.’Hospital theorem for

forall ne N and ¢ > 0.

f+yg, i (if i is nonincreasing), and fg, the conditions of lemma 2 also hold.

We prove it for fp, ¢r,, log(1+ f) and f + g. The case of z = tlim f(t) >0 is

trivial. Let us put « = 0. Since

fi+p) _ f+p) _ fp(H) _ f(t+p/2)
f2t+2p) = f(2t+p)  fp(2t) T f(2t+p)

we can apply the squeeze theorem.
Since pf(t+p) < ¢rp(t) < pf(t), we have for all ¢ > p the estimates

fBt) _ f@t+p) _pfRttp) _ vpp(2t) o pf(21) _ f(20)
ON

f(t) pf(t) T WYpp(t) T pf(t+p)  flt+p) ~

for all t >0,
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and are able to apply the squeeze theorem.
We have log(l +u) = v+ o(u) as u — 0 and f(2t) = f(t) + o(f(t)) as t — oo.
Therefore

los(1+ £20) _ J(20) +o(f(20) _ J +of1) _ | o
log(1+ f(t)) f(@t) +o(f(t)) f(@t) +o(f(t))
=o(h

as t — 0o. For h = f + g we have o(f(t)) + o(g(t)) (h(t)) and

B L JE0 = (1) +g(20) — g(t)
h(t) £(6) + g(0)

_ of(t)) +olg(t)) _ o(h(t))
t

= =o(l) as t— 0.

f)+g(t) h(t)

4) Let us consider f, as in lemma 2, numbers «, 8 > 0 and a nonincreasing function
g: (0,00) — (0,00), so that f(at) < g(t) < f(Bt) forall ¢ > 0. Then, for the function g,
the conditions of lemma 1 also hold.

Lemma 3. Let J be a left ideal in a unital algebra A and S € J be so that
the element I + S is right invertible (i.e., there exists T € A with (I +S5)T = I).
Then, T =1+ X for some X € J.

Proof. Since (I +S)I'=1,wehave T=1-ST =1+ X with X =-5ST e J.
Lemma is proved.
O

Let 7 be a faithful normal semifinite trace on a von Neumann algebra M and
T(I) = 400.

Proposition 1 (cf. lemma 3). Let an isometry operator U € M and a selfadjoint

operator A € M be so that I + A is invertible in M. Then, the following conditions
are equivalent:

(i) U—Ae My;

(i) I—A, I-UeM,.

Proof. (i)= (ii). We have U* — A = (U — A)* € M, and
—U*A+ AU = U*(U — A) — (U* — A)U € M.

Therefore, [—A% = (U*—A)(U+A)—U*A+AU € Mg and [—A = (I—-A2)(I+A)"! €
MQ.ThuS,I*UZI*A*(U*A)GMQ. .
(ii)=(i). We have U — A= (I — A) — (I — U) € My. The proposition is proved.
O

Theorem 1. Let an operator A € M be such that pi(A) >0 for all t >0 and as-

sume that there exists lim Hae(4)
I+ S is right invertible in M. Then, for an operator B € M, such that A= B(I+5S5),

there exists lim pe(A4) =1.
t=oc py(B)

= 1. Let an operator S € Mvo be so that the operator
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Proof. Let a number ¢ > 0 be arbitrary and let a number ¢; > 0 be such that
pey3(S) < e for t > ;. Then, by items 2) and 3) of lemma 1, we have the following
estimates for all ¢t > ¢;:

pe(A) = pe(B + BS) < puyy3(B) + pary3(BS) <
< pay3(B) + pyy3(B)peys(S) < (2)
< 1+ )puss(B).

Let an operator T € M be such that (I+S)T =1I. Then, T = I+ X with some
X € My, see lemma 3. Since

AT = B(I+ S)T = B = A(I + X),

for number t, > 0 with p;/3(X) < ¢ for t > 5, we obtain, analogously to estimates (2),
the relation

pe(B) < (1+¢e)ue/3(A) forall t>t,. (3)
Let a number ¢3 > 0 be such that
A
P P s,

= pey3(A)

see lemma 2. Let us put ty = max{t1,te,t3}. From (2) and (3) we obtain for all ¢ > ¢

pie(A) < (1 + &)peya(B) < (1+€)*pyso(A),

hence,
i (A) 1e/3(B) 2 H11/9(A) 3
1< <(l+4e¢ <(I+e)f—/—=<(1+¢).
hess () Paegs) <Oy <
Therefore,
Nt/S(B) 3
1<(l+e)—/——=<(1+¢ for all ¢ > to.
( )Mt/B(A) ( ) 0
The theorem is proved. O

Corollary 1. Let an operator A € M be such that pe(A) > 0 for all t > 0

A —
and assume that there exists tlim ’um((A)) = 1. Let an operator S € Mgy be so that
oo it
the operator I + S s left invertible in M. Then, for an operator B € M, such that
. . ﬂt(A)
A= (I+ 95)B, there exists lim =1.
{+5) 2% (B)

Proof. We have S* € My and since (XY)"=Y*X"* for all X,Y € M, the op-
erator I 4+ S* is right invertible in M. Therefore, A* = B*(I + S*). Then, we apply
theorem 1 for the operators A*, B*,S* and recall item 1) of lemma 1. The corollary is

proved.
O

Example 2. Let operators X,Y € M be almost commuting, i.e., the commutator
[X,)Y] = XY —YX € Mgy. Let us put K = [X,Y] and let the operator Y X possess
a right inverse T' € M. Hence, XY = YX(I +TK). Since the operator Y X is right
invertible by item 3) of lemma 1, we have 1 = p;(I) = p(YXT) < puy)o(Y X) g y2(7T)
for all ¢ > 0. Hence, p;(YX) > 0 for all ¢ > 0. Now, if the operator I + TK possess
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a right inverse R € M (then XYR = YX(I + TK)R = YX and by item 3) of

lemma 1, we have 0 < (Y X) < piy/2(XY)pej2(R) for all ¢ > 0; hence, pu(XY) >0

for all ¢ > 0) and there exists lim Hee(XY) =1, then there exists lim (XY =
t—o0 e (XY) N t—oo 1 (Y X)

by theorem 1. For any normal operators X,Y € M, we have 1;(XY) = p(Y X) for

all t > 0 [7, corollary 3.6].

Remark 1. In theorem 1 and corollary 1 by item 4) of lemma 1, there exists

AP
lim 1417 =1 for every p > 0. For M = B(H) and 7 = tr, the condition “there
HdiEp) |
. . Mot A .
exists lim = 1" also appeared in [§].
A PP 8]

Example 3. Let (Q,r) be a measure space and M be the von Neumann algebra
of multiplicator operators My by functions f from L. (2,7) on a space Lo(Q,v).
The algebra M containes no compact operators < the measure v has no atoms |9,
theorem 8.4]. Let M = L (0,00) and H = L2(0,00). Then, for any right continuous
nonincreasing function f: (0,00) — (0,00), we have p, (M) = f(t) for all ¢ > 0, see
definition 2.2, ch. II, [10]. Example 1 shows that the set of multiplicator operators My,

pi2e(My)

such that there exists lim ———= =1, is relatively rich.
t—oo iy (My)
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06 anajore Teopembl M.I'. Kpeiina naisa namMepumMbIX OoIepaTopoOB
A.M. Buxvyenmaes

Kasanckuti (IIpusonsicerudi) dedeparvrviti ynusepcumem, 2. Kasanw, 420008, Poccus

AnaHoTanus

IIycts anrebpa dou Heitmana omepaTropos M aeiicTByeT B ruib0epTOBOM IpOCTpaHCcTBE H
U T — TOYHBI HOpMaJBHBIN HoNyKOHeuHbl caex Ha M. Ilycrs i (T), t > 0, — nepecraHoBka
T-m3mepumoro oneparopa 1. Ilycrs 7-m3mepumbiii oneparop A Takoit, aro pi(A) > 0 ays
Beex ¢t > 0 umyctb pot(A)/pu:(A) — 1 npu t — oo. Ilycts 7-KOMIAKTHBL onepaTop S Takoii,
uro oneparop I + S siBiasiercss obparuMmbIM cripasa, rjae I — enuuuna aarebper M. Torma
JUIsL T-u3MepuMoro omeparopa B takoro, uro A = B(I 4+ S), umeem 1 (A)/p(B) — 1 npu
t — 00. Dro sBasercs ananorom teopembl M.I. Kpeitna (mig M = B(H) u 7 = tr (Teopema
11.4, ro1. V, [Tox6epr W.I1., Kpeitn M.I. BeejieHue B TeOpuio JIMHEHHBIX HECAMOCOIPSI?)KEHHBIX
omeparopos. — M.: Hayka, 1965. — 448 c.]), 1y1s1 T-M3MepUMBIX OIEPATOPOB.

KuroueBbie cjioBa: ruib0epTOBO MPOCTPAHCTBO, ajrebpa ¢pon Heitmana, HOpMaIbHBIN
cJiesl, T-U3MEPUMBIil orepaTop, PYHKIUs PACIPEE/IeHNs], IEPECTAHOBKA, T-KOMIIAKTHBIN Orle-

paTop
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