Ideal F-Norms on C^{*}-Algebras

A. M. Bikchentaev ${ }^{\text {* }}$
${ }^{1}$ Kazan (Volga Region) Federal University, ul. Kremlyovskaya 18, Kazan, 420008 Russia Received October 13, 2014

Abstract

We show that every measure of non-compactness on a W^{*}-algebra is an ideal F pseudonorm. We establish a criterion of the right Fredholm property of an element with respect to a W^{*}-algebra. We prove that the element $-I$ realizes the maximum distance from a positive element to a subset of all isometries of a unital C^{*}-algebra, here I is the unit of the C^{*}-algebra. We also consider differences of two finite products of elements from the unit ball of a C^{*}-algebra and obtain an estimate of their ideal F-pseudonorms. We conclude the paper with a convergence criterion in complete ideal F-norm for two series of elements from a W^{*}-algebra.

DOI: 10.3103/S1066369X15050084
Keywords: C^{*}-algebra, W^{*}-algebra, trace, Hilbert space, linear operator, Fredholm operator, isometry, unitary operator, compact operator, ideal, ideal F-norm, measure of noncompactness.

Introduction. We study ideal F-norms on C^{*}-algebras. We show that every measure of noncompactness on a W^{*}-algebra is an ideal F-pseudonorm. We establish a criterion of the right Fredholm property of an element with respect to a W^{*}-algebra. We prove that the minimum distance with respect to an ideal seminorm from an arbitrary element to the Hermitian (respectively, skew-Hermitian) part of a C^{*}-algebra is realized on the Hermitian (respectively, skew-Hermitian) part of this element. We show that the maximum of the distance with respect to an ideal F-pseudonorm from a positive element to the subset of all isometries of a unital C^{*}-algebra is realized on the element $-I$. We obtain an estimate of an ideal F-pseudonorm of the difference of two finite products of elements of a unit ball of a C^{*}-algebra. We establish a convergence criterion with respect to a complete ideal F-norm for two series consisting of elements of a W^{*}-algebra.

1. Definitions and notations. A C^{*}-algebra is a complex Banach $*$-algebra \mathcal{A} such that $\left\|A^{*} A\right\|=$ $\|A\|^{2}$ for all $A \in \mathcal{A}$. A W^{*}-algebra is a C^{*}-algebra \mathcal{A}, that has a predual Banach space $\mathcal{A}_{*}: \mathcal{A} \simeq\left(\mathcal{A}_{*}\right)^{*}$. For a C^{*}-algebra \mathcal{A}, let $\mathcal{A}^{\text {sa }}$ and \mathcal{A}^{+}denote its subsets of Hermitian elements and positive elements, respectively. Let $\mathcal{A}^{1}=\{A \in \mathcal{A}:\|A\| \leq 1\}$. If $A \in \mathcal{A}$, then $|A|=\sqrt{A^{*} A} \in \mathcal{A}^{+}, \Re A=\left(A+A^{*}\right) / 2$ and $\Im A=\left(A-A^{*}\right) /(2 i)$ lie in $\mathcal{A}^{\text {sa }}$. For a unital \mathcal{A}, let \mathcal{A}^{u} and $\mathcal{A}^{\text {iso }}$ denote its subsets of unitary elements ($A^{*} A=A A^{*}=I$) and isometries ($A^{*} A=I$), respectively.

Let \mathcal{H} be a Hilbert space over the field $\mathbb{C}, \mathcal{B}(\mathcal{H})$ be a W^{*}-algebra of all linear bounded operators in \mathcal{H}. Any C^{*}-algebra can be realized as a C^{*}-subalgebra in $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (I. M. Gel'fandM. A. Naimark; see [1], theorem 3.4.1).

Let \mathcal{A} be a W^{*}-algebra. For projectors $P, Q \in \mathcal{A}$, let us write $P \sim Q$ if $P=U^{*} U$ and $Q=U U^{*}$ with some $U \in \mathcal{A}$. A projector $P \in \mathcal{A}$ is called finite, if $P \sim Q \leq P$ implies $P=Q ; \mathcal{A}$ is called finite, if the projector I is finite. Let \mathcal{F} denote an ideal generated by finite, with respect to \mathcal{A}, projectors. A uniform closure of \mathcal{F} forms an ideal \mathcal{K} of compact (with respect to \mathcal{A}) elements. Let $\pi: \mathcal{A} \rightarrow \mathcal{A} / \mathcal{K}$ be a canonical mapping. An element $A \in \mathcal{A}$ is called right Fredholm with respect to \mathcal{A}, if $\pi(A)$ is right invertible in $\mathcal{A} / \mathcal{K}$. Let us denote the set of all such elements as $\Phi^{-}(\mathcal{A})$.

[^0]2. Main results. Let \mathcal{A} be a C^{*}-algebra.

Lemma 1 ([1], theorem 2.2.5, (2)). If $A, B \in \mathcal{A}^{\text {sa }}$ and $C \in \mathcal{A}$, then the inequality $A \leq B$ implies $C A C^{*} \leq C B C^{*}$.

Lemma 2 (ibid., theorem 2.2.6). If $A, B \in \mathcal{A}^{+}$, then the inequality $A \leq B$ implies $\sqrt{A} \leq \sqrt{B}$.
Lemma 3. If $A, B \in \mathcal{A}$, then $|B A| \leq\|B\||A|$.
Definition 1. A mapping $\rho: \mathcal{A} \rightarrow[0,+\infty]$ is called an ideal F-pseudonorm, if $\rho(0)=0$ and the following conditions are fulfilled:
(i) $\rho(A)=\rho\left(A^{*}\right)=\rho(|A|)$ for all $A \in \mathcal{A}$,
(ii) $\rho(A) \leq \rho(B)$ for all $A, B \in \mathcal{A}^{+}$with $A \leq B$,
(iii) $\rho(A+B) \leq \rho(A)+\rho(B)$ for all $A, B \in \mathcal{A}$.

In addition, the set $J_{\rho}=\{A \in \mathcal{A}: \rho(A)<+\infty\}$ is a $*$-ideal in \mathcal{A}. For example, if $A \in J_{\rho}$ and $B \in \mathcal{A}$, then by Lemma 3 we have

$$
\rho(B A)=\rho(|B A|) \leq \rho(\|B\||A|) \leq \rho(([\|B\|]+1)|A|) \leq([\|B\|]+1) \rho(|A|)<+\infty,
$$

where $[a]$ is the integer part of the number a. The following conditions are natural:
(iv) $\rho(\varepsilon A) \rightarrow 0(\varepsilon \rightarrow 0+)$ for all $A \in J_{\rho} \bigcap \mathcal{A}^{+}$,
(v) $\rho\left(A^{*} A\right)=\rho\left(A A^{*}\right)$ for all $A \in \mathcal{A}$.

A mapping $\rho: \mathcal{A} \rightarrow[0,+\infty]$ is called an ideal F-norm, if $\rho(A)=0 \Longleftrightarrow A=0$ and conditions (i)(iv) are fulfilled. If \mathcal{A} is unital and $\rho: \mathcal{A} \rightarrow \mathbb{R}^{+}$satisfies condition (ii), then (iv) is equivalent to the condition
$(\text { iv })^{\prime} \rho(\varepsilon I) \rightarrow 0(\varepsilon \rightarrow 0+)$,
since $0 \leq \varepsilon A \leq \varepsilon\|A\| I$ for all $\varepsilon>0$ and $A \in \mathcal{A}^{+}$, and we have $\rho(0)=0$.
For W^{*}-algebras \mathcal{A} mappings $\rho: \mathcal{A} \rightarrow[0,+\infty]$ with properties (i)-(iii) are studied in [2-4]. For a broad class of mappings $\rho: \mathcal{A}^{+} \rightarrow[0,+\infty]$ with properties (ii), (v) and
(iii)' $\rho(A+B) \leq \rho(A)+\rho(B)$ for all $A, B \in \mathcal{A}^{+}$
representations through positive elements of \mathcal{A}_{*} are obtained: in [5] for Abelian \mathcal{A} and in [6] for atomic \mathcal{A}.
Lemma 4. Let \mathcal{A} be a unital C^{*}-algebra and $\rho: \mathcal{A} \rightarrow[0,+\infty]$ satisfy condition (i). Then $\rho(A)=$ $\rho\left(U A V^{*}\right)$ for all $A \in \mathcal{A}$ and $U, V \in \mathcal{A}^{\text {iso }}$. If \mathcal{A} is a W^{*}-algebra and ρ additionally satisfies condition (ii), then ρ satisfies (v).

Proof. We have $|U X|=|X|$ for all $X \in \mathcal{A}$ and $U \in \mathcal{A}^{\text {iso }}$. Let $B=A V^{*}$, then $\rho\left(U A V^{*}\right)=\rho(U B)=$ $\rho(|U B|)=\rho(B)=\rho\left(\left|B^{*}\right|\right)=\rho\left(\left|V A^{*}\right|\right)=\rho\left(\left|A^{*}\right|\right)=\rho(A)$.

Let \mathcal{A} be a W^{*}-algebra and ρ satisfy (i) and (ii), $A \in \mathcal{A}$ and $A^{*}=U\left|A^{*}\right|$ be a polar decomposition. Then $U \in \mathcal{A}^{1}$ and $\left|A^{*}\right| \in \mathcal{A}^{+},|A|=U\left|A^{*}\right| U^{*}$ and $A^{*} A=U A A^{*} U^{*}$. Let $B=A A^{*} U^{*}$, then $|U B| \leq|B|$ by Lemma 3. We have

$$
\rho\left(A^{*} A\right)=\rho(U B)=\rho(|U B|) \leq \rho(|B|)=\rho(B)=\rho\left(A A^{*} U^{*}\right)=\rho\left(\left|\left(A A^{*} U^{*}\right)^{*}\right|\right)=\rho\left(\left|U A A^{*}\right|\right) \leq \rho\left(A A^{*}\right) .
$$

Changing A by A^{*}, in view of the equality $\left(A^{*}\right)^{*}=A$, we get $\rho\left(A A^{*}\right) \leq \rho\left(A^{*} A\right)$ for all $A \in \mathcal{A}$.
Definition 2 ([7], definition 2.1). Let \mathcal{A} be a W^{*}-algebra. A mapping $\delta: \mathcal{A} \rightarrow \mathbb{R}^{+}$is called a measure of non-compactness, if the following conditions are fulfilled:
(a) δ is a seminorm on \mathcal{A},
(b) $\delta(A)=0 \Longleftrightarrow A \in \mathcal{K}$,
(c) $\delta(A) \leq\|A\|$ for all $A \in \mathcal{A}$,
(d) $\delta(A B) \leq \delta(A) \delta(B)$ for all $A, B \in \mathcal{A}$.

For example, $\alpha(A)=\inf \{\|A-K\| \mid K \in \mathcal{K}\}$ is a measure of non-compactness on \mathcal{A}. It is wellknown that the Calkin algebra $\mathcal{A} / \mathcal{K}$ with respect to a norm induced by α is a C^{*}-algebra. Since $\delta(A)=\delta(A+K)$ for all $K \in \mathcal{K}$ and measures of non-compactness δ, (c) implies $\delta(A) \leq \alpha(A)$ for all $A \in \mathcal{A}$.

Proposition 1. Every measure of non-compactness δ on a W^{*}-algebra \mathcal{A} satisfies conditions (i)(v).

To verify (i), we note that for $A \in \mathcal{A}$ the equality $\delta(A)=\delta(|A|)$ is given in [7] (P. 366, remark 4). If $A=U|A|$ is a polar decomposition, then $U \in \mathcal{A}^{1}$ and $\delta\left(A^{*}\right)=\delta\left(|A| U^{*}\right) \leq \delta(|A|) \delta\left(U^{*}\right) \leq\left\|U^{*}\right\| \delta(A) \leq$ $\delta(A)$. Changing the places of A and A^{*}, we get $\delta(A) \leq \delta\left(A^{*}\right)$.

To verify (ii), we pick $A, B \in \mathcal{A}^{+}$with $A \leq B$. Then there exists an element $C \in \mathcal{A}^{1}$ such that $A=C B C^{*}$ ([8], Chap. 1, Section 1, lemma 2). By (d) and (c) we have

$$
\delta(A)=\delta\left(C B C^{*}\right) \leq\|C\|\left\|C^{*}\right\| \delta(B) \leq \delta(B)
$$

Properties (iii) and (iv) follow from (a); now (v) follows from Lemma 4.
From theorem 2.4 in [7] and Proposition 1 we get
Corollary 1. Let δ be a measure of non-compactness on a W^{*}-algebra \mathcal{A} and $A \in \mathcal{A}$. Any element $A \in \Phi^{-}(\mathcal{A})$ if and only if there exists a constant $c>0$ such that $\delta(B A) \geq c \delta(B)$ for all $B \in \mathcal{A}$.

Let us note that in [7] (P. 367) the statement was given with an "additional" condition of $\delta(T)=$ $\delta\left(T^{*}\right), T \in \mathcal{A}$.

Lemma 5. Let \mathcal{A} be a C^{*}-algebra and $\rho: \mathcal{A} \rightarrow[0,+\infty]$ satisfy conditions (ii) and (v). Then $\rho\left(\sqrt{A_{1}} A_{2} \sqrt{A_{1}}\right) \leq \rho\left(\sqrt{A_{2}} B_{1} \sqrt{A_{2}}\right) \leq \rho\left(\sqrt{B_{1}} B_{2} \sqrt{B_{1}}\right)$ for all $A_{k}, B_{k} \in \mathcal{A}$ with $A_{k} \leq B_{k}, k=1,2$.

Lemma 1 yields $\sqrt{A_{2}} A_{1} \sqrt{A_{2}} \leq \sqrt{A_{2}} B_{1} \sqrt{A_{2}}$ and $\sqrt{B_{1}} A_{2} \sqrt{B_{1}} \leq \sqrt{B_{1}} B_{2} \sqrt{B_{1}}$, hence

$$
\rho\left(\sqrt{A_{1}} A_{2} \sqrt{A_{1}}\right)=\rho\left(\sqrt{A_{2}} A_{1} \sqrt{A_{2}}\right) \leq \rho\left(\sqrt{A_{2}} B_{1} \sqrt{A_{2}}\right)=\rho\left(\sqrt{B_{1}} A_{2} \sqrt{B_{1}}\right) \leq \rho\left(\sqrt{B_{1}} B_{2} \sqrt{B_{1}}\right) .
$$

Proposition 2. Let \mathcal{A} be a unital C^{*}-algebra and $\rho: \mathcal{A} \rightarrow[0,+\infty]$ satisfy condition (ii). Then $\rho(A+B) \leq \rho(\sqrt{I+B}(I+A) \sqrt{I+B})$ for all $A \in \mathcal{A}^{+} \bigcap \mathcal{A}^{1}$ and $B \in \mathcal{A}+$. If, in addition, ρ satisfies condition (v), then $\rho(\sqrt{I+B}(I+A) \sqrt{I+B}) \leq \rho\left(e^{B / 2} e^{A} e^{B / 2}\right)$ for all $A, B \in \mathcal{A}^{+}$.

Proof. Since $0 \leq A \leq I$, by Lemma 1 we have

$$
A+B \leq I+B+\sqrt{I+B} A \sqrt{I+B}=\sqrt{I+B}(I+A) \sqrt{I+B} .
$$

Since $I+X \leq e^{X}$ for all $X \in \mathcal{A}^{+}$, we can apply Lemma 5 .
Proposition 3. Let \mathcal{A} be a C^{*}-algebra, $A \in \mathcal{A}$, a mapping $\rho: \mathcal{A} \rightarrow[0,+\infty]$ satisfy condition (iii) and $\rho(X)=\rho(-X)=\rho\left(X^{*}\right)=2 \rho(X / 2)$ for all $X \in \mathcal{A}$. Then $\rho(A-\Re A) \leq \rho(A-B)$ and $\rho(A-$ $i \Im A) \leq \rho(A-i B)$ for all $B \in \mathcal{A}^{\text {sa }}$.

Thus, $\inf _{B \in \mathcal{A}^{\text {sa }}} \rho(A-B)=\rho(A-\Re A)$ and $\inf _{B \in \mathcal{A}^{\text {sa }}} \rho(A-i B)=\rho(A-i \Im A)$ for all $A \in \mathcal{A}$. The statement follows from the equalities

$$
\begin{aligned}
A-\Re A & =\frac{A-B}{2}-\frac{A^{*}-B}{2}=\frac{A-B}{2}-\frac{(A-B)^{*}}{2} \\
A-i \Im A & =\frac{A-i B}{2}+\frac{A^{*}+i B}{2}=\frac{A-i B}{2}+\frac{(A-i B)^{*}}{2} .
\end{aligned}
$$

Theorem 1. Let \mathcal{A} be a unital C^{*}-algebra and $\rho: \mathcal{A}^{+} \rightarrow \mathbb{R}^{+}$satisfy conditions (ii), (iii)', (iv)' and (v). Then $\rho(|A-U|) \leq \rho(A+I)$ for all $A \in \mathcal{A}^{+}$and $U \in \mathcal{A}^{\text {iso }}$.

Proof. By theorem 4.2 in [9] we get

$$
\forall \varepsilon>0 \exists V, W \in \mathcal{A}^{\mathrm{u}} \quad\left(|A-U| \leq V A V^{*}+W|U| W^{*}+\varepsilon I=V(A+I) V^{*}+\varepsilon I\right)
$$

By the properties of ρ and Lemma 4, we get $\rho(|A-U|) \leq \rho\left(V(A+I) V^{*}+\varepsilon I\right) \leq \rho(A+I)+\rho(\varepsilon I)$. We complete the proof by passing to the limit as $\varepsilon \rightarrow 0+$.

Thus, $\sup _{U \in \mathcal{A}^{\text {iso }}} \rho(|A-U|)=\rho(A-(-I))$ for all $A \in \mathcal{A}^{+}$. In other words, the maximal " ρ-distance" from an element $A \in \mathcal{A}^{+}$to the set $\mathcal{A}^{\text {iso }}$ is realized on the element $U_{0}=-I$. Since $U_{0} \in \mathcal{A}^{\text {u }}$, we have $\sup _{U \in \mathcal{A}^{\mathrm{u}}} \rho(|A-U|)=\rho(A-(-I))$.

Let J be a $*$-ideal in a unital C^{*}-algebra \mathcal{A} and $A \in \mathcal{A}^{+}$. If $U-A \in J$ for some $U \in \mathcal{A}^{\text {iso }}$, then $I-A \in J$. Indeed, we have $U^{*}-A \in J$ and $I-A^{2}=\left(U^{*}-A\right)(U+A)+U^{*}(U-A)-\left(U^{*}-A\right) U \in$ J. Since $I+A$ is invertible, we have $I-A=\left(I-A^{2}\right)(I+A)^{-1} \in J$.

Corollary 2. Let \mathcal{A} be a unital C^{*}-algebra and $\rho: \mathcal{A} \rightarrow \mathbb{R}^{+}$satisfy conditions (i)-(iii), (iv)' and (v). If $A \in \mathcal{A}$ has a polar decomposition $A=U|A|$ with $U \in \mathcal{A}^{\mathrm{u}}$, then

$$
\sup _{V \in \mathcal{A}^{\text {iso }}} \rho(A-V)=\sup _{V \in \mathcal{A}^{\mathrm{u}}} \rho(A-V)=\rho(A+U)
$$

Proof. For $V \in \mathcal{A}^{\text {iso }}$ we have $U^{*} V \in \mathcal{A}^{\text {iso }}$. By Lemma 4 and Theorem 1, we get

$$
\begin{aligned}
& \rho(A-V)=\rho(U|A|-V)=\rho\left(U\left(|A|-U^{*} V\right)\right)=\rho\left(|A|-U^{*} V\right) \\
& \leq \rho(|A|+I)=\rho(U|A|+U)=\rho(A+U)
\end{aligned}
$$

If \mathcal{A} is a finite W^{*}-algebra, $A \in \mathcal{A}$ and $A=T|A|$ is a polar decomposition with a partial isometry T, then T can be extended to $U \in \mathcal{A}^{\mathrm{u}}$ with the property $A=U|A|$ (see [3], proof of theorem 2).

Theorem 2. Let \mathcal{A} be a C^{*}-algebra and $\rho: \mathcal{A} \rightarrow[0,+\infty]$ satisfy conditions (i)-(iii). Then

$$
\begin{equation*}
\rho\left(\prod_{k=1}^{n} A_{k}-\prod_{k=1}^{n} B_{k}\right) \leq \sum_{k=1}^{n} \rho\left(A_{k}-B_{k}\right) \text { for all } A_{k}, B_{k} \in \mathcal{A}^{1}, \quad k=1, \ldots, n \tag{1}
\end{equation*}
$$

Proof. By Lemmas 1-3 we get

$$
\begin{aligned}
\left|\left(\left(A_{1}-B_{1}\right) A_{2}\right)^{*}\right| & =\sqrt{\left(A_{1}-B_{1}\right) A_{2} A_{2}^{*}\left(A_{1}-B_{1}\right)^{*}} \leq\left|\left(A_{1}-B_{1}\right)^{*}\right| \\
\left|B_{1}\left(A_{2}-B_{2}\right)\right| & =\sqrt{\left(A_{2}-B_{2}\right)^{*} B_{1}^{*} B_{1}\left(A_{2}-B_{2}\right)} \leq\left|A_{2}-B_{2}\right|
\end{aligned}
$$

Let us carry out an induction with respect to $n \in \mathbb{N}$. For $n=2$ we have

$$
\rho\left(A_{1} A_{2}-B_{1} B_{2}\right)=\rho\left(\left(A_{1}-B_{1}\right) A_{2}+B_{1}\left(A_{2}-B_{2}\right)\right) \leq \rho\left(A_{1}-B_{1}\right)+\rho\left(A_{2}-B_{2}\right)
$$

Induction hypothesis: let (1) be fulfilled for all $n=1,2, \ldots, m$. Then

$$
\rho\left(\prod_{k=1}^{m+1} A_{k}-\prod_{k=1}^{m+1} B_{k}\right) \leq \rho\left(\prod_{k=1}^{m} A_{k}-\prod_{k=1}^{m} B_{k}\right)+\rho\left(A_{m+1}-B_{m+1}\right) \leq \sum_{k=1}^{m+1} \rho\left(A_{k}-B_{k}\right)
$$

Theorem 3. Let \mathcal{A} be a C^{*}-algebra, $\rho: \mathcal{A} \rightarrow[0,+\infty]$ be an ideal F-norm such that J_{ρ} is complete with respect to the metric $d_{\rho}(A, B)=\rho(A-B), X_{n}, Y_{n} \in \mathcal{A}^{\text {sa }}$ and $Z_{n}=X_{n}+i Y_{n}, n \in \mathbb{N}$. If the series $\sum_{n=1}^{\infty} X_{n}^{2}$ and $\sum_{n=1}^{\infty} Z_{n}^{2}$ are ρ-convergent, then the series $\sum_{n=1}^{\infty}\left|Z_{n}\right|^{2}$ and $\sum_{n=1}^{\infty}\left|Z_{n}^{*}\right|^{2}$ are also ρ convergent; for a W^{*}-algebra \mathcal{A} the converse is true as well.

Proof. If $A \in \mathcal{A}$, then $\rho(\Re A) \leq \rho(A)+\rho\left(A^{*}\right)=2 \rho(A)$. Similarly, $\rho(\Im A) \leq 2 \rho(A)$. Hence, $\rho(A) \leq$ $\rho(\Re A)+\rho(\Im A) \leq 4 \rho(A)$ and the ρ-convergence of the sequence of elements is equivalent to the ρ-convergence of the Hermitian and the skew-Hermitian parts of these elements. Since the series $\sum_{n=1}^{\infty}\left(X_{n}^{2}-Y_{n}^{2}\right)=\Re \sum_{n=1}^{\infty}\left(X_{n}^{2}-Y_{n}^{2}+i\left(X_{n} Y_{n}+Y_{n} X_{n}\right)\right)=\Re \sum_{n=1}^{\infty} Z_{n}^{2}$ is ρ-convergent, then the series $\sum_{n=1}^{\infty} Y_{n}^{2}$ is ρ-convergent, too. Since

$$
\begin{equation*}
\left|Z_{n}\right|^{2}+\left|Z_{n}^{*}\right|^{2}=2 X_{n}^{2}+2 Y_{n}^{2}, \quad n \in \mathbb{N}, \tag{2}
\end{equation*}
$$

the series $\sum_{n=1}^{\infty}\left|Z_{n}\right|^{2}$ and $\sum_{n=1}^{\infty}\left|Z_{n}^{*}\right|^{2}$ are ρ-convergent as well.
Let now \mathcal{A} be a W^{*}-algebra and the series $\sum_{n=1}^{\infty}\left|Z_{n}\right|^{2}$ and $\sum_{n=1}^{\infty}\left|Z_{n}^{*}\right|^{2}$ be ρ-convergent. By (2), the series $\sum_{n=1}^{\infty} X_{n}^{2}$ and $\sum_{n=1}^{\infty} Y_{n}^{2}$ are also ρ-convergent. Hence,

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall k \geq N, \quad \forall m \in \mathbb{N}\left(\rho\left(\sum_{n=k}^{k+m}\left(X_{n}^{2}+Y_{n}^{2}\right)\right)<\varepsilon\right) . \tag{3}
\end{equation*}
$$

Let $\varepsilon>0$ and k, m be chosen in (3). Assume

$$
A_{k, m}=\sum_{n=k}^{k+m}\left(X_{n}^{2}+Y_{n}^{2}\right), \quad B_{k, m}=\sum_{n=k}^{k+m}\left(X_{n} Y_{n}+Y_{n} X_{n}\right) .
$$

Since $\left(X_{n} \pm Y_{n}\right)^{2} \geq 0$, we get $-\left(X_{n}^{2}+Y_{n}^{2}\right) \leq X_{n} Y_{n}+Y_{n} X_{n} \leq X_{n}^{2}+Y_{n}^{2}$. By conducting a termwise summation of these double inequalities over all $n=k, \ldots, k+m$, we get $-A_{k, m} \leq B_{k, m} \leq A_{k, m}$. By theorem 1 in [4] and by [10] there exists an element $S \in \mathcal{A}^{\mathrm{u}} \bigcap \mathcal{A}^{\text {sa }}$ such that $2\left|B_{k, m}\right| \leq A_{k, m}+S A_{k, m} S$. Then $S^{2}=I$ and by the definition of ρ, Lemma 4 and (3) we have

$$
\begin{aligned}
\rho\left(B_{k, m}\right) \leq \rho\left(2\left|B_{k, m}\right|\right) \leq \rho\left(A_{k, m}+S A_{k, m} S\right) & \\
& \leq \rho\left(A_{k, m}\right)+\rho\left(\sqrt{A_{k, m}} S^{2} \sqrt{A_{k, m}}\right)=2 \rho\left(A_{k, m}\right)<2 \varepsilon .
\end{aligned}
$$

Thus, the series $\sum_{n=1}^{\infty}\left(X_{n} Y_{n}+Y_{n} X_{n}\right)$ is ρ-convergent.
Example. Let τ be a faithful normal semifinite trace on a W^{*}-algebra \mathcal{A} and a number $p \in(0,+\infty)$.
Define the mapping $\rho: \mathcal{A} \rightarrow[0,+\infty]$ as

$$
\rho(A)= \begin{cases}\tau\left(|A|^{p}\right)^{1 / p}, & \text { if } p>1 \\ \tau\left(|A|^{p}\right), & \text { if } 0<p \leq 1\end{cases}
$$

Then ρ satisfies conditions (i)-(v). If $\mathcal{A}=\mathcal{B}(\mathcal{H})$ and $\tau=\operatorname{tr}$ is a canonical trace, then J_{ρ} coincides with the Schatten-von Neumann ideal \mathfrak{S}_{p}. The operator $A \in \mathcal{B}(\mathcal{H})$ has a finite order, if $A \in \mathfrak{S}_{p}$ for some $p>0$. The lower bound of the values of p, for which this relation holds, is called the order of the operator and is denoted as $q(A)$, i.e., $q(A)=\inf \left\{p>0 \mid A \in \mathfrak{S}_{p}\right\}$. Thus, $q(A+B) \leq \max \{q(A), q(B)\}$ for all $A, B \in \mathcal{B}(\mathcal{H})$ and q is an ideal F-pseudonorm, q does not satisfy (iv). We get $J_{q}=\bigcup_{p>0} \mathfrak{S}_{p}$.

REFERENCES

1. Murphy, G. J. C^{*}-Algebras and Operator Theory (Academic Press, 1990; Faktorial, Moscow, 1997).
2. Bikchentaev, A. M. "The Triangle Inequality for Some Spaces of Measurable Operators," in Konstr. Teor. Funkts. Funkts. Analiz (Kazan University Press, Kazan, 1992) No. 8, $23-32$.
3. Bikchentaev, A. M. "Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras," Mathematical Notes 75, No. 3-4, 315-321 (2004).
4. Bikchentaev, A. M. "Block Projection Operators in Normed Solid Spaces of Measurable Operators," Russian Mathematics (Iz. VUZ) 56, No. 2, 75-79 (2012).
5. Bikchentaev, A. M. "The Haagerup Problem on Subadditive Weights on W^{*}-Algebras," Russian Mathematics (Iz. VUZ) 55, No. 10, 82-85 (2011).
6. Bikchentaev, A. M. "The Haagerup problem on subadditive weights on W^{*}-algebras. II," Russian Mathematics (Iz. VUZ) 57, No. 12, 66-69 (2013).
7. Ströh, A., Swart, J. "Measures of Noncompactness of Operators in von Neumann Algebras," Indiana Univ. Math. J. 38, No. 2, 365-375 (1989).
8. Dixmier, J. Les Algebres d'Opérateurs dans l'Espace Hilbertien (Algebres de von Neumann), 2nd ed. (Gauthier-Villars, Paris, 1969).
9. Akemann, C. A., Anderson, J., Pedersen, G. K. "Triangle Inequalities in Operator Algebras," Linear Multilinear Algebra 11, No. 2, 167-178 (1982).
10. Bikchentaev, A. M. "On Hermitian Operators X and Y Meeting the Condition $-Y \leq X \leq Y$," Lobachevskii J. Math. 34, No. 3, 227-233 (2013).

Translated by P. A. Novikov

[^0]: *E-mail: Airat.Bikchentaev@kpfu.ru.

