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Abstract—Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful
normal semifinite trace on M. We define two (closed in the topology of convergence in measure τ)
classes P1 and P2 of τ-measurable operators and investigate their properties. The class P2 contains
P1. If a τ-measurable operator T is hyponormal, then T lies in P1; if an operator T lies in Pk, then
UTU∗ belongs to Pk for all isometries U from M and k = 1, 2; if an operator T from P1 admits the
bounded inverse T−1 then T−1 lies in P1. If a bounded operator T lies in P1 then T is normaloid, T n

belongs to P1 and a rearrangement μt(T
n) ≥ μt(T )

n for all t > 0 and natural n. If a τ-measurable
operator T is hyponormal and T n is τ-compact operator for some natural number n then T is both
normal and τ-compact. If an operator T lies in P1 then T 2 belongs to P1. If M = B(H) and τ = tr,
then the class P1 coincides with the set of all paranormal operators on H. If a τ-measurable operator
A is q-hyponormal (1 ≥ q > 0) and |A∗| ≥ μ∞(A)I then A is normal. In particular, every τ-compact
q-hyponormal (or q-cohyponormal) operator is normal. Consider a τ-measurable nilpotent operator
Z �= 0 and numbers a, b ∈ R. Then an operator Z∗Z − ZZ∗ + a�Z + b�Z cannot be nonpositive
or nonnegative. Hence a τ-measurable hyponormal operator Z �= 0 cannot be nilpotent.
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1. INTRODUCTION

Let M be a von Neumann operator algebra on a Hilbert space H, τ be a faithful normal semifinite
trace on M, ˜M be the ∗-algebra of all τ-measurable operators, a number 0 < p < ∞ and Lp(M, τ) be
the space of integrable (with respect to τ ) in p-th degree operators. Let M1 = {X ∈ M : ||X|| = 1},
μt(X) be a rearrangement of operator X ∈ ˜M and μ∞(X) = lim

t→∞
μt(X). In this paper we introduce

two classes

P1 = {T ∈ ˜M : ||T 2A|| ≥ ||TA||2 for all A ∈ M1 with TA ∈ M},

P2 = {T ∈ ˜M : μt(T
2) ≥ μt(T )

2 for all t > 0}
of τ-measurable operators and investigate their properties. The classes P1 and P2 are closed in the
topology of convergence in measure τ and P1 ⊂ P2 (Propositions 3.5 and 3.30). In Theorem 3.1 we
obtain an equivalent definition of the class P1, that allows us to call P1 a class of all paranormal τ-
measurable operators. If an operator T ∈ ˜M is hyponormal then T ∈ P1; if an operator T ∈ P1 has
the inverse T−1 ∈ M then T−1 ∈ P1 (Theorem 3.6). If an operator T ∈ Pk then UTU∗ ∈ Pk for all
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isometries U ∈ M and k = 1, 2. If an operator T ∈ P1 ∩M then T n ∈ P1 for all n ∈ N (Theorem 3.12).
Consider an operator T ∈ P1 ∩M and n ∈ N. Then μt(T

n) ≥ μt(T )
n for all t > 0 (Theorem 3.16)

and we have the equivalences: an operator T is τ-compact ⇔ an operator T n is τ-compact; T ∈
Lpn(M, τ) ⇔ T n ∈ Lp(M, τ), 0 < p < +∞ (Corollary 3.17). Every operator T ∈ P1 ∩M is normaloid
(Corollary 3.18). If an operator (0 �=)T ∈ M is quasinilpotent then T /∈ P1 (Corollary 3.19). If an
operator T ∈ ˜M is hyponormal and T n is τ-compact operator for some natural number n then T is both
normal and τ-compact (Corollary 3.7); it is a strengthening of item (i) assertion of Corollary 3.2 [2]. If
T ∈ P1 then T 2 ∈ P1 (Theorem 3.21).

The assertions of items (ii)–(iii) of Corollary 3.2, Corollaries 3.4, 3.17 and 3.20, Propositions 3.5,
3.22, 3.27 and Theorems 3.16, 4.1 and 4.6 are new even for ∗-algebra B(H) of all bounded linear
operators on H. Let M = B(H) and τ = tr. Then the class P1 coincides with the set of all paranormal
operators on H (Corollary 3.3). The class P1 is sequentially closed in the strong operator topology
(Corollary 3.4) and contains a non-hyponormal operator (Corollary 3.13). The class P2 is closed in the
|| · ||-topology (Corollary 3.31). IfH is separable and infinite-dimensional then P1 �= P2 (Corollary 3.23).
If M = M2(C) and τ = tr2 is the canonical trace then P1 = P2 is the set of all normal matrices from M
(Theorem 3.32). Some of these results without proofs were announced in the brief note [4].

Let 1 ≥ q > 0. We prove that if an operator A ∈ ˜M is q-hyponormal and |A∗| ≥ μ∞(A)I then A is
normal (Theorem 4.1). The proof of Theorem 4.1 is based on a deep result from [7]. Every τ-compact q-
hyponormal (or q-cohyponormal) operator is normal (Corollary 4.3; see also [2]). If an operator A ∈ ˜M is
hyponormal and |λI +A∗| ≥ μ∞(λI +A∗)I for some λ ∈ C then A is normal (Corollary 4.4). Consider
a nilpotent operator Z ∈ ˜M, Z �= 0 and numbers a, b ∈ R. Then an operator Z∗Z −ZZ∗ + a�Z + b�Z
cannot be nonpositive or nonnegative (Theorem 4.6). Hence a non-zero hyponormal operator Z ∈ ˜M
cannot be nilpotent (Corollary 4.7). If an operator Q ∈ ˜M and Q2 = Q �= Q∗ then for any number
b ∈ R the operator Q∗Q−QQ∗ + b�Q cannot be nonpositive or nonnegative (Corollary 4.8). If an
operator S ∈ ˜M and S2 = I, S �= S∗ then for any number b ∈ R the operator S∗S − SS∗ + b�S cannot
be nonpositive or nonnegative (Corollary 4.9).

2. NOTATION, DEFINITIONS AND PRELIMINARIES

Let M be a von Neumann algebra of operators on a Hilbert space H, let Mpr be the lattice of
projections in M, and let M+ be the cone of positive elements in M. Let I be the unit of M and
P⊥ = I − P for P ∈ Mpr.

A mapping ϕ : M+ → [0,+∞] is called a trace, if ϕ(X + Y ) = ϕ(X) + ϕ(Y ), ϕ(λX) = λϕ(X)
for all X,Y ∈ M+, λ ≥ 0 (moreover, 0 · (+∞) ≡ 0) and ϕ(Z∗Z) = ϕ(ZZ∗) for all Z ∈ M. A trace ϕ is
called faithful, ifϕ(X) > 0 for allX ∈ M+, X �= 0; finite, if ϕ(X) < +∞ for all X ∈ M+; semifinite, if
ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X,ϕ(Y ) < +∞} for every X ∈ M+; normal, if Xi ↗ X (Xi,X ∈
M+) ⇒ ϕ(X) = supϕ(Xi).

An operator on H (not necessarily bounded or densely defined) is said to be affiliated with a von
Neumann algebra M if it commutes with any unitary operator from the commutant M′ of the algebra
M. A self-adjoint operator is affiliated with M if and only if all the projections from its spectral
decomposition of unity belong to M.

Let τ be a faithful normal semifinite trace on M. A closed operator X of everywhere dense in H
domain D(X) and affiliated with M is said to be τ-measurable if for any ε > 0 there exists such a
projection P ∈ Mpr that PH ⊂ D(X) and τ(P⊥) < ε. The set ˜M of all τ-measurable operators is a
∗-algebra under transition to the adjoint operator, multiplication by a scalar, and strong addition and
multiplication operations defined as closure of the usual operations [17, 18]. Let L+ and Lsa denote
the positive and Hermitian parts of a family L ⊂ ˜M, respectively. We denote by ≤ the partial order in
˜Msa

generated by its proper cone ˜M+
. If an operator X ∈ ˜M then its real and imaginary components

�X = (X +X∗)/2,�X = (X −X∗)/(2i) lie in ˜Msa
.

If X is a closed densely defined linear operator affiliated with M and |X| =
√
X∗X then the spectral

decomposition P |X|(·) is contained in M and X belongs to ˜M if and only if there exists a number
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λ ∈ R such that τ(P |X|((λ,+∞))) < +∞. If X ∈ ˜M and X = U |X| is the polar decomposition

of X then U ∈ M and |X| ∈ ˜M+
. Also if |X| =

+∞
∫

0

λP |X|(dλ) is a spectral decomposition then

τ(P |X|((λ,+∞))) → 0 as λ → +∞. Let μt(X) denote the rearrangement of the operator X ∈ ˜M,
i. e. the nonincreasing right continuous function μ(X) : (0,+∞) → [0,+∞) given by the formula

μt(X) = inf{||XP || : P ∈ Mpr, τ(P⊥) ≤ t}, t > 0. (1)

The sets U(ε, δ) = {X ∈ ˜M : (||XP || ≤ ε and τ(P⊥) ≤ δ for some P ∈ Mpr)}, where ε > 0, δ > 0,
form a base at 0 for a metrizable vector topology tτ on ˜M, called the measure topology ([17, 20, p. 18]).
Equipped with this topology, ˜M is a complete topological ∗-algebra in which M is dense. We will write
Xn

τ−→ X if a sequence {Xn}∞n=1 converges to X ∈ ˜M in the measure topology on ˜M.

The set of τ-compact operators ˜M0 = {X ∈ ˜M : lim
t→+∞

μt(X) = 0} is an ideal in ˜M [21]. The set

of elementary operators F(M) = {X ∈ M : μt(X) = 0 for some t > 0} is an ideal in M. Let m be a
linear Lebesgue measure on R. A noncommutative Lp-Lebesgue space (0 < p < +∞) affiliated with

(M, τ) can be defined as Lp(M, τ) = {X ∈ ˜M : μ(X) ∈ Lp(R
+,m)} with the F-norm (the norm for

1 ≤ p < +∞) ||X||p = ||μ(X)||p, X ∈ Lp(M, τ). We have F(M) ⊂ Lp(M, τ) ⊂ ˜M0 for all 0 < p <
+∞.

If τ(I) < +∞ then ˜M = ˜M0 consists of all closed linear operators on H affiliated with M and
F(M) = M. Furthermore, tτ is independent of a concrete choice of a trace τ and is minimal among
all metrizable topologies which agree with the ring structure of ˜M [5, Theorem 2].

Lemma 2.1 (see [9, 21]). Let X,Y,Z ∈ ˜M. Then 1) μt(X) = μt(|X|) = μt(X
∗) for all t > 0;

2) if X,Y ∈ M then μt(XZY ) ≤ ||X||||Y ||μt(Z) for all t > 0; 3) μt(|X|p) = μt(X)p for all p > 0
and t > 0; 4) if |X| ≤ |Y | then μt(X) ≤ μt(Y ) for all t > 0; 5) μs+t(X + Y ) ≤ μs(X) + μt(Y ) for
all s, t > 0; 6) μt(λX) = |λ|μt(X) for all λ ∈ C and t > 0; 7) lim

t→0+
μt(X) = ||X|| if X ∈ M and

lim
t→0+

μt(X) = ∞ if X /∈ M.

Lemma 2.2 (see [8], p. 720). If X,Y ∈ ˜M+
and Z ∈ ˜M then the inequality X ≤ Y implies that

ZXZ∗ ≤ ZY Z∗.

An operator A ∈ ˜M is said to be normal, if A∗A = AA∗; quasinormal, if A commute with A∗A,
i.e. A · A∗A = A∗A ·A. Let 1 ≥ q > 0. An operator A ∈ ˜M is said to be q-hyponormal if (A∗A)q ≥
(AA∗)q . If q = 1 then A is said to be hyponormal. An operator A ∈ ˜M is said to be q-cohyponormal
if A∗ is q-hyponormal; nilpotent if An = 0 for some n ∈ N.

If M = B(H), i.e. the ∗-algebra of all linear bounded operators on H, and τ = tr is the canonical
trace then ˜M coincides with B(H). In this case ˜M0 is the compact operators ideal on H, F(M) is the
finite-dimensional operators ideal on H and

μt(X) =
+∞
∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}+∞
n=1 is a sequence of the operator X s-numbers [11, Ch. 1]; here χA is the indicator

function of a set A ⊂ R. Then the space Lp(M, τ) is a Shatten–von Neumann ideal Sp, 0 < p < +∞.
An operator T ∈ B(H) is said to be quasinilpotent, if its spectrum σ(T ) = {0}; paranormal,

if ||T 2x||H ≥ ||Tx||2H for all x ∈ H1 = {y ∈ H : ||y||H = 1}, see [14, 10]; normaloid, if ||T || =
sup
y∈H1

|〈Tx, x〉|. It is known that T is normaloid ⇔ its spectral radius equals ||T ||, or, equivalently,

||T n|| = ||T ||n for all n ∈ N [12]. It is shown in [15, Problem 9.5] that an operator T ∈ B(H) is
paranormal ⇔

|T |2 ≤ 1

2
(λ−1|T 2|2 + λI) for all λ > 0. (2)
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Let (Ω, ν) be a measure space and M be the von Neumann algebra of multiplicator operators Mf by
functions f from L∞(Ω, ν) on a space L2(Ω, ν). The algebra M contains no compact operators ⇔ the
measure ν has no atoms [1, Theorem 8.4].

3. TWO CLASSES OF τ-MEASURABLE OPERATORS

Let τ be a faithful normal semifinite trace on a von Neumann algebra M. Assume that ||X|| = +∞
for all X ∈ ˜M\M. Put M1 = {X ∈ M : ||X|| = 1}. We introduce two classes of τ-measurable
operators:

P1 = {T ∈ ˜M : ||T 2A|| ≥ ||TA||2 for all A ∈ M1 with TA ∈ M},

P2 = {T ∈ ˜M : μt(T
2) ≥ μt(T )

2 for all t > 0}.
It is obvious that

T ∈ Pk ⇔ λT ∈ Pk for all λ ∈ C \ {0}, k = 1, 2. (3)

Theorem 3.1. For an operator T ∈ ˜M the following conditions are equivalent: (i) T ∈ P1; (ii) T
meets condition (2).

Proof. (i) ⇒ (ii). Assume that for an operator T ∈ P1 condition (2) does not hold. Then there exists
a number λ > 0 such that

1

2
(λ−1|T 2|2 + λI)− |T |2 = X − Y, (4)

where X,Y ∈ ˜M+
, XY = 0 and Y �= 0. Let Y =

∞
∫

0

tP Y (dt) be the spectral decomposition and n ∈ N

be such that a projection P = P Y ((n−1, n)) �= 0. Then PXP = 0 and PY P ≥ n−1P . Relation (4)
multiplication by the projection P from the left and the right-hand sides, leads us to

P |T |2P =
1

2
(λ−1P |T 2|2P + λP ) + PYP ≥ 1

2
(λ−1P |T 2|2P + (λ+ 2n−1)P ).

Since P is a unit in the reduced von Neumann algebra MP , we have

||TP ||2 = ||P |T |2P || ≥ 1

2
||λ−1P |T 2|2P + (λ+ 2n−1)P || = 1

2
(λ−1||T 2P ||2 + (λ+ 2n−1)).

If T 2P = 0 then ||TP ||2 ≥ λ2−1 +n−1 > ||T 2P || = 0. If T 2P �= 0 then by the inequality a2 + b2 ≥ 2|ab|
for all a, b ∈ R we have

||TP ||2 ≥ 1

2
· 2
√

λ−1(λ+ 2n−1) · ||T 2P || > ||T 2P ||.

Thus, in both cases T /∈ P1 — a contradiction.
(ii) ⇒ (i). Consider an operator A ∈ M1 such that TA ∈ M. Then A∗A ≤ I and |T |A ∈ M. If

T 2A /∈ M then the assertion is met. Let T 2A ∈ M. Inequality (2) multiplication from the left-hand side
by the operator A∗ and from the right-hand side by the operator A, leads us to

A∗|T |2A ≤ 1

2
(λ−1A∗|T 2|2A+ λA∗A) ≤ 1

2
(λ−1A∗|T 2|2A+ λI) for all λ > 0.

Therefore ||A∗|T |2A|| = ||TA||2 ≤ 1

2
(λ−1||T 2A||2 + λ) for all λ > 0. Put here λ = ||T 2A|| and obtain

||TA||2 ≤ ||T 2A||. Theorem is proved. �

Corollary 3.2. Consider operators T ∈ P1, A ∈ ˜M and numbers k ∈ N, 0 < p, q, r < ∞ with
1/p + 1/q = 1/r. Then

(i) if T kA,T k+2A ∈ M then T k+1A ∈ M;
(ii) if T kA ∈ M, T k+2A ∈ F(M) or T kA ∈ F(M), T k+2A ∈ M then T k+1A ∈ F(M);

(iii) if T k+2A ∈ ˜M0 then T k+1A ∈ ˜M0;

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 6 2018



PARANORMAL MEASURABLE OPERATORS 735

(iv) if T kA ∈ Lp(M, τ), T k+2A ∈ Lq(M, τ) then T k+1A ∈ L2r(M, τ).
Proof. For all t, λ > 0 and k ∈ N by Theorem 3.1, items 3)–5), 6), and 7) of Lemma 2.1, Lemma 2.2

and inequality (2) we have the following estimates for the rearrangements:

2μt(T
k+1A)2 = 2μt(A

∗(T ∗)k+1T k+1A) = 2μt(A
∗T ∗k · T ∗T · T kA)

≤ μt(A
∗T ∗k(λ−1T ∗2T 2 + λI)T kA) ≤ λ−1μt/2(A

∗(T ∗)k+2T k+2A)

+ λμt/2(A
∗T ∗kT kA) = λ−1μt/2(T

k+2A)2 + λμt/2(T
kA)2.

Note that inf
λ>0

λ−1a+ λb = 2
√
ab for all a, b ≥ 0. Hence

μt(T
k+1A)2 ≤ μt/2(T

k+2A)μt/2(T
kA) for all t > 0.

In order to check item (i) we apply item 6) of Lemma 2.1. The assertion is proved. �

Corollary 3.3. If M = B(H) then the class P1 coincides with the class of all paranormal
operators on H.

Since the product operation is sequentially jointly continuous in the strong operator topology in
B(H) [12, Problem 93], Corollary 3.3 implies

Corollary 3.4. If M = B(H) then the class P1 is sequentially closed in the strong operator
topology.

Proposition 3.5. Let τ be a faithful normal semifinite trace on a von Neumann algebra M.
Then P1 ⊂ P2.

Proof. Let t > 0 be fixed. From relation (1) for X = T 2 we have

∀ε > 0 ∃Pε ∈ Mpr(τ(P⊥
ε ) ≤ t, ε+ μt(T

2) > ||T 2Pε|| ≥ μt(T
2)),

thereby ||TPε||2 ≤ ε+ μt(T
2). Note that a projection Pε is included in the right-hand side of (1)

for X = T . Therefore μt(T ) ≤ ||TPε|| and because of the arbitrariness of the number ε > 0 we get
μt(T

2) ≥ μt(T )
2. Proposition is proved. �

If an operator T ∈ ˜M is hyponormal or cohyponormal then μt(T
2) = μt(T )

2 for all t > 0 [2, Theo-
rem 3.1] and T ∈ P2. If T ∈ ˜M is nilpotent of second order (T �= 0 = T 2) then T /∈ P2.

Theorem 3.6. (i) If an operator T ∈ ˜M is hyponormal then T ∈ P1.
(ii) If an operator T ∈ P1 then UTU∗ ∈ P1 for all isometries U ∈ M.

(iii) If an operator T ∈ P1 has an inverse T−1 ∈ M then T−1 ∈ P1.

Proof. (i). Consider a hyponormal operator T ∈ ˜M and A ∈ M1 such that TA ∈ M. If T 2A /∈ M
then the assertion is obvious. For T 2A ∈ M by Lemma 2.2 we have

||T 2A|| = ||A∗T 2∗T 2A||1/2 = ||A∗T ∗ · T ∗T · TA||1/2 ≥ ||A∗T ∗ · TT ∗ · TA||1/2

= |||T |2 ·A|| ≥ ||A∗ · |T |2 ·A|| = ||TA||2.

(ii). Consider A ∈ M1 such that UTU∗ ·A ∈ M. If (UTU∗)2 · A /∈ M or U∗A = 0 then the
assertion is obvious. Let (UTU∗)2 · A ∈ M and U∗A �= 0. Then 0 < ||U∗A|| ≤ 1 and

||(UTU∗)2 · A|| = ||UT 2U∗ ·A|| ≥ ||U∗ · UT 2U∗ ·A|| = ||T 2U∗A||

=
∣

∣

∣

∣

∣

∣T 2 U∗A

||U∗A||

∣

∣

∣

∣

∣

∣ · ||U∗A|| ≥
∣

∣

∣

∣

∣

∣T
U∗A

||U∗A||

∣

∣

∣

∣

∣

∣

2
· ||U∗A|| = ||T · U∗A||2

||U∗A|| ≥ ||T · U∗A||2 ≥ ||UTU∗ · A||2.

(iii). Consider A ∈ M1, it is necessary to prove that ||T−2A|| ≥ ||T−1A||2. If T−2A = 0 then
T · T−2A = T−1A = 0 and the assertion holds. If T−2A �= 0 then

∣

∣

∣

∣

∣

∣T 2 T−2A

||T−2A||

∣

∣

∣

∣

∣

∣ ≥
∣

∣

∣

∣

∣

∣T
T−2A

||T−2A||

∣

∣

∣

∣

∣

∣

2
,
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i.e.
||A||

||T−2A|| =
1

||T−2A|| ≥
||T−1A||2
||T−2A||2 and the assertion is proved. �

Corollary 3.7. If an operator T ∈ ˜M is hyponormal and T n ∈ ˜M0 for some n ∈ N then T ∈ ˜M0
and is normal.

Proof. By item (i) of Theorem 3.6 we have T ∈ P1. Applying n− 1 times item (iii) of Corollary 3.2
with the operator A = I, we obtain T ∈ ˜M0 and can apply Theorem 3.2 from [2]. �

Corollary 3.8. If an operator T ∈ ˜M is quasinormal then T ∈ P1.

Proof. Every quasinormal operator T ∈ ˜M is hyponormal [3, Theorem 2.9]. �

If an operator T ∈ ˜M is quasinormal then T n is also quasinormal [6, Proposition 2.10] and μt(T
n) =

μt(T )
n for all t > 0 and n ∈ N [6, Theorem 2.6]. Similarly to Lemma 1 from [19] one can prove

Proposition 3.9. If an operator T ∈ ˜M is hyponormal and (T − zI)−1 ∈ M for some z ∈ C

then (T − zI)−1 is hyponormal.
Lemma 3.10. If an operator T ∈ P1 then

||T 3A|| ≥ ||T 2A|| · ||TA|| for all A ∈ M1 with TA ∈ M. (5)

Proof. If T 3A ∈ ˜M\M then the assertion is obvious. Let T 3A ∈ M. Without loss of generality,
assume that TA �= 0. Then

||T 3A|| = ||TA|| ·
∣

∣

∣

∣

∣

∣T 2 TA

||TA||

∣

∣

∣

∣

∣

∣ ≥ ||TA|| ·
∣

∣

∣

∣

∣

∣T
TA

||TA||

∣

∣

∣

∣

∣

∣

2

=
||T 2A||2
||TA|| ≥ ||T 2A|| · ||TA||2

||TA|| = ||T 2A|| · ||TA||

and Lemma is proved. �

Lemma 3.11. If an operator T ∈ P1 then

||T k+1A||2 ≥ ||T kA||2 · ||T 2A|| for all A ∈ M1 with TA ∈ M and k ∈ N. (6k)

Proof. The proof is by induction. For k = 1 we have

||T 2A||2 = ||T 2A|| · ||T 2A|| ≥ ||TA||2 · ||T 2A||
and (61) is met. Let (6k) hold for k and TA �= 0, then

||T k+2A||2 = ||TA||2 ·
∣

∣

∣

∣

∣

∣T k+1 TA

||TA||

∣

∣

∣

∣

∣

∣

2
≥ ||TA||2 ·

∣

∣

∣

∣

∣

∣T k TA

||TA||

∣

∣

∣

∣

∣

∣

2
·
∣

∣

∣

∣

∣

∣T 2 TA

||TA||

∣

∣

∣

∣

∣

∣

= ||T k+1A||2 ||T
3A||

||TA|| ≥ ||T k+1A||2 · ||T 2A||

by item (5) of Lemma 3.10 and (6k). Therefore (6k+1) holds and Lemma is proved. �

Theorem 3.12. If an operator T ∈ P1 ∩M then T n ∈ P1 for all n ∈ N.
Proof. The proof is by induction. It suffices to show that if T, T k ∈ P1 ∩M then T k+1 ∈ P1. Let

A ∈ M1 and T 2A �= 0. Then

||T 2(k+1)A|| =
∣

∣

∣

∣

∣

∣T 2k T 2A

||T 2A||

∣

∣

∣

∣

∣

∣ · ||T 2A|| ≥
∣

∣

∣

∣

∣

∣T k T 2A

||T 2A||

∣

∣

∣

∣

∣

∣

2
· ||T 2A||

=
||T k+2A||2
||T 2A|| ≥ ||T k+1A||2 · ||T 2A||

||T 2A|| = ||T k+1A||2 (7)

by (6k+1) of Lemma 3.11. Theorem is proved. �

Corollary 3.13. If M = B(H) then P1 possesses a non-hyponormal operator.
Proof. P. Halmos ([12, Problem 164]) presented an example of a hyponormal operator T ∈ M

such that T 2 is non-hyponormal. We have T ∈ P1 by item (i) of Theorem 3.5, hence T 2 ∈ P1 by
Theorem 3.12. �
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Proposition 3.14. The set P1 ∩M is || · ||-closed in M.
Proof. Consider Tn ∈ P1 ∩M, T ∈ M and A ∈ M1. If ||Tn − T || → 0 as n → ∞ then ||TnA−

TA|| → 0 and ||T 2
nA− T 2A|| → 0 as n → ∞ via || · ||-continuity of the product operation in M.

Therefore ||TnA|| → ||TA|| and ||T 2
nA|| → ||T 2A|| as n → ∞. �

Lemma 3.15. Let a sequence {an}∞n=1 of positive numbers be so that a2 ≥ a21 and anan−2 ≥ a2n−1

for all n ≥ 3. Then an ≥ an1 for all n ≥ 2.
Proof. If k > 2 then akak−2 ≥ a2k−1, ak−1ak−3 ≥ a2k−2, . . . , a4a2 ≥ a23, a3a1 ≥ a22. Multiplying all

the left-hand sides and all the right-hand sides of these inequalities, after obvious contractions, we
obtain aka1 ≥ ak−1a2, hence ak/ak−1 ≥ a2/a1 ≥ a1 and an ≥ a1an−1 ≥ a21an−2 ≥ . . . ≥ an1 . Lemma
is proved. �

Theorem 3.16. If an operator T ∈ P1 ∩M then μt(T
n) ≥ μt(T )

n for all t > 0 and n ∈ N.
Proof. Let t > 0 and n ∈ N be fixed. From (1) for X = T n we have

∀ε > 0 ∃Pε ∈ Mpr(τ(P⊥
ε ) ≤ t, ε+ μt(T

n) > ||T nPε|| ≥ μt(T
n)).

Since

||T kPε|| =
∣

∣

∣

∣

∣

∣T 2 T k−2Pε

||T k−2Pε||

∣

∣

∣

∣

∣

∣ · ||T k−2Pε|| ≥
∣

∣

∣

∣

∣

∣T
T k−2Pε

||T k−2Pε||

∣

∣

∣

∣

∣

∣

2
· ||T k−2Pε|| =

||T k−1Pε||2
||T k−2Pε||

and ||T 2Pε|| ≥ ||TPε||2, for a number sequence ak = ||T kPε||, k ∈ N, all the conditions of Lemma 3.15
are met. Hence an ≥ an1 , i.e. ||T nPε|| ≥ ||TPε||n for all n ∈ N. Thus, ε+ μt(T

n) > ||TPε||n ≥ μt(T )
n

and Theorem is proved. �

Corollary 3.17. Consider an operator T ∈ P1 ∩M and n ∈ N. We have the equivalences:
(i) T ∈ F(M) ⇔ T n ∈ F(M); (ii) T ∈ ˜M0 ⇔ T n ∈ ˜M0; (iii) T ∈ Lpn(M, τ) ⇔ T n ∈ Lp(M, τ), 0 <
p < +∞.

Corollary 3.18. Every operator T ∈ P1 ∩M is normaloid.
Corollary 3.19. If an operator (0 �=)T ∈ M is quasinilpotent then T /∈ P1.
Corollary 3.3 and Theorem 3.16 put together imply
Corollary 3.20. If an operator T ∈ B(H) is paranormal then sn(T

k) ≥ sn(T )
k for all n, k ∈ N.

Theorem 3.21. If an operator T ∈ P1 then T 2n ∈ P1 for all n ∈ N. Moreover, μt(T
2n) ≥ μt(T )

2n

for all t > 0 and n ∈ N.
Proof. It suffices to verify that if T ∈ P1 then T 2 ∈ P1. Let A ∈ M1 and T 2A ∈ M. It is necessary

to show that ||T 4A|| ≥ ||T 2A||2. If T 4A /∈ M or T 2A = 0 then the inequality is satisfied. If T 4A ∈ M
and T 2A �= 0 then T 3A ∈ M by item (i) of Corollary 3.2 with k = 1 and repeating the calculations (7)
with k = 1 we obtain T 2 ∈ P1. Applying successively n times Proposition 3.5 and the fact established
above, we have

μt(T
2n) = μt((T

2n−1
)2) ≥ μt(T

2n−1
)2 = μt((T

2n−2
)2)2 ≥ μt(T

2n−2
)4 ≥ . . . ≥ μt(T )

2n .

Theorem is proved. �

Proposition 3.22. For T ∈ ˜M we have T ∈ P2 ⇔ T ∗ ∈ P2.
Proof. (⇒). For all T ∈ P2 and t > 0 by item 1) of Lemma 2.1 we have

μt((T
∗)2) = μt((T

2)∗) = μt(T
2) ≥ μt(T )

2 = μt(T
∗)2. (8)

(⇐). Holds by the equality (T ∗)∗ = T for all T ∈ ˜M and (8). �

Corollary 3.23. If M = B(H) for separable and infinite dimensional H then P1 �= P2.
Proof. Let {en}∞n=0 be an orthonormal basis in H. The unilateral shift Ten = en+1 (n = 0, 1, 2, . . .)

is a hyponormal operator (an isometry) and T ∈ P1 by item (i) of Theorem 3.6. The null-space KerT ∗ is
generated by vector e0, and the null-space Ker(T ∗)2 is generated by vectors e0 and e1. We have

0 = ||(T ∗)2A|| < ||T ∗A||2 = 1

and T ∗ /∈ P1 for the one-dimensional projection A = 〈·, e1〉e1 . The assertion is proved. �
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Proposition 3.24. For T ∈ P2 we have the equivalences: (i) T ∈ M ⇔ T 2 ∈ M; (ii) T ∈
F(M) ⇔ T 2 ∈ F(M); (iii) T ∈ ˜M0 ⇔ T 2 ∈ ˜M0; (iv) T ∈ L2p(M, τ) ⇔ T 2 ∈ Lp(M, τ), 0 < p <
+∞.

Lemma 3.25. If T ∈ ˜M and operators U, V ∈ M are isometries then μt(UTV ∗) = μt(T ) for all
t > 0.

Proof. For all t > 0 by item 2) of Lemma 2.1 we have

μt(T ) = μt(U
∗ · UTV ∗ · V ) ≤ ||U∗||||V || · μt(UTV ∗) = μt(UTV ∗) ≤ ||U ||||V ∗|| · μt(T ) = μt(T )

and Lemma is proved. �

Proposition 3.26. If T ∈ P2 and an operator U ∈ M is an isometry then UTU∗ ∈ P2.

Proof. Double application of Lemma 3.25 for all t > 0 yields

μt((UTU∗)2) = μt(UT 2U∗) = μt(T
2) ≥ μt(T )

2 = μt(UTU∗)2.

The assertion is proved. �

Proposition 3.27. Let T ∈ ˜M and a unitary operator S ∈ Msa be so that ST = TS. Then
T ∈ Pk ⇔ ST ∈ Pk, k = 1, 2.

Proof. We have S2 = I and (ST )2 = T 2.

(⇒). Let k = 1 and A ∈ M1 be so that TA ∈ M. Then

||(ST )2A|| = ||T 2A|| ≥ ||TA||2 = ||A∗T ∗TA|| = ||A∗T ∗S2TA|| = ||STA||2.

If k = 2 then for all t > 0 by Lemma 3.25 we obtain μt((ST )
2) = μt(T

2) ≥ μt(T )
2 = μt(ST )

2.

(⇐). If ST ∈ Pk then by the above proved results T = S · ST ∈ Pk, k = 1, 2. �

Example 3.28. Assume that T ∈ ˜M and T 2 = I. If T ∈ P2 then T belongs to Msa and is
unitary. Indeed, the equality T 2 = I implies that T = 2P − I with P = P 2 ∈ ˜M. Since T ∈ P2, we
have μt(I) = 1 ≥ μt(2P − I)2, i.e. μt(2P − I) ∈ [0, 1] for all t > 0. Therefore, ||2P − I|| ≤ 1 and
||2P || = ||(2P − I) + I|| ≤ ||2P − I||+ ||I|| ≤ 2. Thus P = P ∗ ∈ Mpr and T both belongs to Msa and
is unitary.

Example 3.29. Consider T ∈ ˜M and T 2 = T . If T ∈ P2 then T ∈ Mpr. Indeed, we have μt(T
2) =

μt(T ) ≥ μt(T )
2, i.e. μt(T ) ∈ [0, 1] for all t > 0. Therefore, ||T || ≤ 1 by item 7) of Lemma 2.1 and

T = T ∗ ∈ Mpr.
Proposition 3.30. The classes P1 and P2 are closed in the measure topology tτ .

Proof. Condition (2) is equivalent to the condition T 2∗T 2 − 2λT ∗T + λ2I ≥ 0 for all λ > 0. Hence
tτ-closedness of the class P1 follows from Theorem 3.1, tτ-continuity of the involution, tτ-continuity of

the product operation on ˜M and tτ-closedness of the cone ˜M+
in ˜M.

We show tτ-closedness of the class P2 in ˜M. Let Tn ∈ P2, T ∈ ˜M and Tn
τ−→ T as n → ∞. Then

T 2
n

τ−→ T 2 as n → ∞ via tτ-continuity of the product operation on ˜M. Now we note that if Xn,X ∈ ˜M
and Xn

τ−→ X as n → ∞, then μt(Xn) → μt(X) as n → ∞ in every continuity point t of the function
μ(X) [9]. The assertion is proved. �

Corollary 3.31. If M = B(H) then the class P2 is closed in || · ||-topology.

Theorem 3.32. If M = M2(C) and τ = tr2 is the canonical trace then P1 = P2 is the set Mnor

of all normal matrices in M.

Proof. By Proposition 3.5 and item (i) of Theorem 3.6 we have Mnor ⊂ P1 ⊂ P2. We show that if
T ∈ M and T /∈ Mnor then T /∈ P2. Recall that every matrix A ∈ Mn(C) is unitarily similar to upper
triangular matrix B via Shur decomposition A = UBU∗ [13, Theorem 2.3.1]. Wherein sk(A) = sk(B),
k = 1, 2, . . . , n, see Lemma 3.25. If A ∈ P2 then by items 1) and 3) of Lemma 2.1 we have

sk(A
2)2 ≥ sk(A)

4 = sk(|A|)4 = sk((A
∗A)2), k = 1, 2, . . . , n.
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Without loss of generality we assume that the matrix T /∈ Mnor has the form T =

⎛

⎝

c a

0 b

⎞

⎠, where

a, b, c ∈ C, a �= 0. If c = 0 then T 2 = bT and s1(T )
2 = |a|2 + |b|2. Therefore s1(T

2) = |b|s1(T ) <
s1(T )

2 and T /∈ P2. If c �= 0 then with allowance for (3), we can assume that c = 1. Put

f(a, b) = 1 + 2|a|2 + |a|4 + 2|a|2|b|2 + |b|4, g(a, b) = 1 + |a|2|1 + b|2 + |b|4

for a, b ∈ C, a �= 0. Since

(T ∗T )2 =

⎛

⎝

1 + |a|2 a(1 + |a|2 + |b|2)

ā(1 + |a|2 + |b|2) |a|2 + (|a|2 + |b|2)2

⎞

⎠ ,

we have

s1((T
∗T )2) =

1

2
(f(a, b) +

√

f(a, b)2 − 4|b|2). (9)

Since

T 2∗T 2 =

⎛

⎝

1 a(1 + b)

ā(1 + b̄) |a|2||1 + b|2 + |b|4

⎞

⎠ ,

we have

s1((T
2)2) =

1

2
(g(a, b) +

√

g(a, b)2 − 4|b|2). (10)

We show that s1(T 2) < s1(T )
2, i.e. T /∈ P2. It suffices to establish the inequality g(a, b) < f(a, b) for all

a, b ∈ C, a �= 0, and use monotonocity of the real function t �→
√
t(t ≥ 0), see (9), (10). By the triangle

inequality and the Cauchy–Bunyakovsky inequality we obtain |1 + b|2 ≤ 1 + |b|2 + 2|b| ≤ 2 + 2|b|2,
hence g(a, b) < f(a, b) for all a, b ∈ C, a �= 0, and Theorem is proved. �

Example 3.33. For T ∈ B(H) the inequality

sk(T
2) ≤ sk(T )

2 (11)

holds for k = 1; for k = 2 in the general case relation (11) does not hold true. Indeed,

s1(T
2) = ||T 2|| ≤ ||T || · ||T || = ||T ||2 = s1(T )

2

by submultiplicativity of the C∗-norm. Let T =

⎛

⎝

1 1

0 −1

⎞

⎠. Then T 2 = I and T /∈ P2 via Example 3.28.

By items 1) and 3) of Lemma 2.1 we have s2(T
2) = 1 > (3−

√
5)/2 = s2(T

∗T ) = s2(|T |)2 = s2(T )
2.

4. HYPONORMAL τ-MEASURABLE OPERATORS

Theorem 4.1. Let 1 ≥ q > 0, an operator A ∈ ˜M be q-hyponormal and |A∗| ≥ μ∞(A)I. Then A
is normal.

Proof. By items 1) and 3) of Lemma 2.1 for A ∈ ˜M we have

μt((A
∗A)q) = μt(|A|2q) = μt(A)

2q = μt(|A∗|)2q = μt((AA
∗)q) for all t > 0. (12)

Let a q-hyponormal operator A be not normal. Then there exists 0 �= B ∈ ˜M+
such that (A∗A)q =

(AA∗)q +B. If X,Y ∈ ˜M+
, Y �= 0 and X ≥ μ∞(X)I then there exists a number s > 0 such that

μs(X) < μs(X + Y ), (13)
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see Proposition 2.2 [7]. From the inequality |A∗| ≥ μ∞(A)I by monotonocity of the real function f(λ) =
λ2q(λ ≥ 0) we obtain (AA∗)q ≥ μ∞((AA∗)q)I, see items 1) and 3) of Lemma 2.1. For X = (AA∗)q,
Y = B via (12) we have

μt(X) = μt((AA
∗)q) = μt((A

∗A)q) = μt(X + Y ) for all t > 0.

We have a contradiction with (13). Thus Y = B = 0 and (A∗A)q = (AA∗)q . Therefore A∗A = AA∗ and
Theorem is proved. �

Corollary 4.2. Let an operator A ∈ ˜M be q-cohyponormal and |A| ≥ μ∞(A)I. Then A is
normal.

Corollary 4.3 ([2]). Every τ-compact q-hyponormal (or q-cohyponormal) operator is normal.

Corollary 4.4. Let an operator A ∈ ˜M be hyponormal and |λI +A∗| ≥ μ∞(λI +A∗)I for some
λ ∈ C. Then A is normal.

Proof. An operator λ̄I +A is also hyponormal (the bar sign over a symbol stands for complex
conjugation). �

Example 4.5. If A = XY with X,Y ∈ B(H)sa is hyponormal thenA is normal (see Corollary on p. 49
in [16]). There exists a nonnormal hyponormal operator A = XY Z with X,Y,Z ∈ B(H)sa, see p. 51
in [16]. Therefore the condition |A∗| ≥ μ∞(A)I does not hold for such an operator A by Theorem 4.1.

Theorem 4.6. Consider a nilpotent operator Z ∈ ˜M, Z �= 0 and numbers a, b ∈ R. Then the
operator

TZ,a,b = Z∗Z − ZZ∗ + a�Z + b�Z (14)

cannot be nonpositive or nonnegative.
Proof. Let a number n ∈ N be such that Zn−1 �= 0 = Zn.
Step 1. Assume that TZ,a,b ≥ 0 for some pair a, b ∈ R. We multiply both sides of equality (14) by the

operator (Z∗)n−1 from the left and by the operator Zn−1 from the right, and achieve

(Z∗)n−1TZ,a,bZ
n−1 = −(Z∗)n−1ZZ∗Zn−1 = −|Z∗Zn−1|2.

By Lemma 2.2 we have (Z∗)n−1TZ,a,bZ
n−1 ≥ 0, and at the same time −|Z∗Zn−1|2 ≤ 0. Hence

|Z∗Zn−1| = 0 and Z∗Zn−1 = 0. If n = 2 then Zn−1 = Z = 0; if n > 2 then 0 = (Z∗)n−2 · Z∗Zn−1 =
|Zn−1|2. Consequently Zn−1 = 0, which is a contradiction.

Step 2. Assume now that TZ,a,b ≤ 0 for some pair a, b ∈ R. Then the nilpotent V = −Z∗ is subject
to the conditions V n−1 �= 0 = V n and TV,a,−b = −TZ,a,b ≥ 0. By Step 1 we have V n−1 = 0, which is a
contradiction. This completes the proof. �

For a = b = 0 we have
Corollary 4.7 ([6], Theorem 2.4). A non-zero hyponormal operator Z ∈ ˜M cannot be nilpotent.

Assume that an operator Q ∈ ˜M and Q2 = Q. Then there exists a unique projection P ∈ Mpr such
that QP = P , PQ = Q and P ˜M = Q˜M (see Theorem 2.21 in [3]). There is a unique decomposition
Q = P +Z, where Z2 = 0 = ZP and PZ = Z (see Theorem 2.23 in [3]). Therefore Q ∈ ˜M0 if and only
if P ∈ ˜M0. By Theorem 4.6 for a = 2 by using the above mentioned decomposition we have

Corollary 4.8. If an operator Q ∈ ˜M and Q2 = Q �= Q∗ then for any number b ∈ R the operator
Q∗Q−QQ∗ + b�Q cannot be nonpositive or nonnegative.

Corollary 4.9. If an operator S ∈ ˜M and S2 = I, S �= S∗, then for any number b ∈ R the
operator S∗S − SS∗ + b�S cannot be nonpositive or nonnegative.

Proof. The formula S = 2Q− I defines a one-to-one correspondence between the symmetries S
(S2 = I) and the idempotents Q = Q2. �

ACKNOWLEDGMENTS

This work was supported by the subsidies allocated to Kazan Federal University for the state
assignment in the sphere of scientific activities (1.1515.2017/4.6, 1.9773.2017/8.9).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 6 2018



PARANORMAL MEASURABLE OPERATORS 741

REFERENCES
1. A. B. Antonevich, Linear Functional Equations. The Operator Approach (Universitetskoe, Minsk, 1988)

[in Russian].
2. A. M. Bikchentaev, “On normal τ-measurable operators affiliated with semifinite von Neumann algebras,”

Math. Notes 96, 332–341 (2014).
3. A. M. Bikchentaev, “On idempotent τ-measurable operators affiliated to a von Neumann algebra,” Math.

Notes 100, 515–525 (2016).
4. A. M. Bikchentaev, “Two classes of τ-measurable operators affiliated with a von Neumann algebra,” Russ.

Math. 61, 76–80 (2017).
5. A. M. Bikchentaev, “Minimality of convergence in measure topologies on finite von Neumann algebras,”

Math. Notes 75 (3–4), 315–321 (2004).
6. A. M. Bikchentaev, “Integrable products of measurable operators,” Lobachevskii J. Math. 37, 397–403

(2016).
7. V. I. Chilin, A. V. Krygin, and F. A. Sukochev, “Extreme points of convex fully symmetric sets of measurable

operators,” Integral Equat. Operator Theory 15 (2), 186–226 (1992).
8. P. G. Dodds, T. K.-Y. Dodds, and B. de Pagter, “Noncommutative Köthe duality,” Trans. Am. Math. Soc.
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