On convex closed sets of measurable operators

Airat M. Bikchentaev^{*}

Let \mathcal{M} be a von Neumann algebra of operators on a Hilbert space \mathcal{H} and τ be a faithful normal semifinite trace on \mathcal{M} . Let t_{τ} be the measure topology on the *-algebra $\widetilde{\mathcal{M}}$ of all τ -measurable operators.

We prove that for $B \in \widetilde{\mathcal{M}}^+$ the sets $I_B = \{A = A^* \in \widetilde{\mathcal{M}} : -B \leq A \leq B\}$ and $K_B = \{A \in \widetilde{\mathcal{M}} : A^*A \leq B\}$ are convex and t_{τ} -closed in $\widetilde{\mathcal{M}}$. The set $M_B = \{A \in \widetilde{\mathcal{M}} : |A| \leq B\}$ is convex for every operator $B \in \widetilde{\mathcal{M}}^+$ if and only if \mathcal{M} is abelian. Let an algebra \mathcal{M} contain a sequence $(P_n)_{n=1}^{\infty}$ of pairwise orthogonal nonzero equivalent projections.

Let an algebra \mathcal{M} contain a sequence $(P_n)_{n=1}^{\infty}$ of pairwise orthogonal nonzero equivalent projections. If $B \in \widetilde{\mathcal{M}}^+$ and $bP_1 \leq B$ for some number 0 < b < 1 then the sets K_B and M_B cannot be t_{τ} -compact. In particular, if $\mathcal{M} = \mathcal{B}(\mathcal{H})$, dim $\mathcal{H} = \infty$ and $B \in \mathcal{M}^+ \setminus \{0\}$ then the sets K_B and M_B cannot be $\|\cdot\|$ -compact. An operator $B \in \mathcal{B}(\mathcal{H})^+$ is compact if and only if the set I_B is $\|\cdot\|$ -compact.

Let $\mathfrak{S}_p(\mathcal{H})$ be a Shatten-von Neumann ideal, $0 . If an operator <math>B \in \mathfrak{S}_p(\mathcal{H})^+$ then I_B is a $\|\cdot\|_p$ -compact subset of $\mathfrak{S}_p(\mathcal{H})^{\mathrm{sa}}$.

Acknowledgments The research was funded by the subsidies allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, projects 1.1515.2017/4.6 and 1.9773.2017/8.9.

^{*}Kazan Federal University, Kazan, Russia; e-mail: Airat.Bikchentaev@kpfu.ru