On operators all of which powers have the same trace

Airat M. Bikchentaev^{*} Pyotr N. Ivanshin[†]

We introduce the class $K_{\mathcal{A},\phi} = \{A \in \mathcal{A} : \phi(A^k) = \phi(A) \quad \forall k \in \mathbb{N}\}$ for a linear functional ϕ on an algebra \mathcal{A} and consider the properties of this class. We have $K_{\mathcal{A},\phi} = K_{\mathcal{A},t\phi}$, for all $t \in \mathbb{C}$. Also we prove the "0–1 number lemma": if a set $\{z_k\}_{k=1}^n \subset \mathbb{C}$ is such that

$$z_1 + \ldots + z_n = z_1^2 + \ldots + z_n^2 = \cdots = z_1^{n+1} + \ldots + z_n^{n+1},$$

then $z_k \in \{0,1\}$, for all k = 1, 2, ..., n. This lemma helps us to show that $\{\phi(A) : A \in K_{\mathcal{A},\phi}\} = \{0, 1, ..., n\}$ and $\det(A) \in \{0, 1\}$ for $\mathcal{A} = \mathbb{M}_n(\mathbb{C})$ and $\phi = \text{tr}$, the canonical trace. We have A = P + Z where P is a projection and Z is a nilpotent for any $A \in K_{\mathcal{A},\phi}$.

Assume that a trace class operator A on a Hilbert space admits a constant $C \in \mathbb{C}$ such that $\forall k \in \mathbb{N}$ tr $(A^k) = C$. Then $C \in \mathbb{N} \cup \{0\}$ and the spectrum $\sigma(A)$ is a subset of $\{0, 1\}$. Finally we give the description of all the elements of the class $K_{\mathcal{A},\phi}$ for $\mathbb{M}_2(\mathbb{C})$.

Acknowledgments The research was partially funded by the subsidies allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, projects 1.1515.2017/4.6 and 1.9773.2017/8.9.

^{*}Kazan Federal University, Kazan, Russia; e-mail: Airat.Bikchentaev@kpfu.ru

[†]Kazan Federal University, Kazan, Russia; e-mail: pivanshi@yandex.ru