Paranormal Elements in Normed Algebra

A. M. Bikchentaev^{*} and S. A. Abed^{**}

Kazan Federal University ul. Kremlyovskaya 18, Kazan, 420008 Russia Received March 29, 2017

Abstract—For a normed algebra \mathcal{A} and natural numbers k we introduce and investigate the $\|\cdot\|$ closed classes $\mathcal{P}_k(\mathcal{A})$. We show that $\mathcal{P}_1(\mathcal{A})$ is a subset of $\mathcal{P}_k(\mathcal{A})$ for all k. If T in $\mathcal{P}_1(\mathcal{A})$, then T^n lies in $\mathcal{P}_1(\mathcal{A})$ for all natural n. If \mathcal{A} is unital, $U, V \in \mathcal{A}$ are such that $\|U\| = \|V\| = 1$, VU = I and T lies in $\mathcal{P}_k(\mathcal{A})$, then UTV lies in $\mathcal{P}_k(\mathcal{A})$ for all natural k. Let \mathcal{A} be unital, then 1) if an element T in $\mathcal{P}_1(\mathcal{A})$ is right invertible, then any right inverse element T^{-1} lies in $\mathcal{P}_1(\mathcal{A})$; 2) for $\|I\| = 1$ the class $\mathcal{P}_1(\mathcal{A})$ consists of normaloid elements; 3) if the spectrum of an element T, $T \in \mathcal{P}_1(\mathcal{A})$ lies on the unit circle, then $\|TX\| = \|X\|$ for all $X \in \mathcal{A}$. If $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then the class $\mathcal{P}_1(\mathcal{A})$ coincides with the set of all paranormal operators on a Hilbert space \mathcal{H} .

DOI: 10.3103/S1066369X1805002X

Keywords: Hilbert space, C^* -algebra, paranormal operator, quasinilpotent operator, isometry, hyponormal operator, normaloid operator, normed algebra, unital algebra.

Introduction. Investigation of different subsets in normed algebras and in *-algebras of operators is an actual problem of functional analysis (see, e.g., [1-5] for classes of hyponormal, normal, idempotent, unitary operators and differences of idempotents, respectively). In this paper for a normed algebra \mathcal{A} and $k \in \mathbb{N}$ we introduce and investigate $\|\cdot\|$ -closed classes

$$\mathcal{P}_k(\mathcal{A}) = \{T \in \mathcal{A} : \|T^{k+1}A\| \ge \|TA\|^{k+1} \text{ for all } A \in \mathcal{A} \text{ with } \|A\| = 1\}.$$

It is shown that $\mathcal{P}_1(\mathcal{A}) \subset \mathcal{P}_k(\mathcal{A})$ for all $k \in \mathbb{N}$ (Theorem 2). If \mathcal{A} is a dense subalgebra of normed algebra \mathcal{B} , then $\mathcal{P}_k(\mathcal{A}) \subset \mathcal{P}_k(\mathcal{B})$ for all $k \in \mathbb{N}$ (Proposition 1). If $T \in \mathcal{P}_1(\mathcal{A})$, then $T^n \in \mathcal{P}_1(\mathcal{A})$ for all $n \in \mathbb{N}$ (Theorem 5). If \mathcal{A} is unital, $U, V \in \mathcal{A}$ are such that ||U|| = ||V|| = 1, VU = I and $T \in \mathcal{P}_k(\mathcal{A})$, then $UTV \in \mathcal{P}_k(\mathcal{A})$ for all $k \in \mathbb{N}$ (Theorem 3). In particular, if \mathcal{A} is a unital C^* -algebra and $T \in \mathcal{P}_k(\mathcal{A})$, then $UTU^* \in \mathcal{P}_k(\mathcal{A})$ for all isometries $U \in \mathcal{A}$ and $k \in \mathbb{N}$ (Corollary 3). If \mathcal{A} is commutative and $||T^2|| = ||T||^2$ for all $T \in \mathcal{A}$, then $\mathcal{P}_1(\mathcal{A}) = \mathcal{A}$ (Proposition 6).

Let \mathcal{A} be unital, then 1) if an element $T \in \mathcal{P}_1(\mathcal{A})$ is right invertible, then any right inverse element T^{-1} lies in $\mathcal{P}_1(\mathcal{A})$ (Theorem 4); 2) for ||I|| = 1 the class $\mathcal{P}_1(\mathcal{A})$ consists of normaloid elements (Corollary 1); 3) if the spectrum of an element $T, T \in \mathcal{P}_1(\mathcal{A})$ lies on the unit circle, then ||TX|| = ||X|| for all $X \in \mathcal{A}$ (Corollary 4). If $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then the class $\mathcal{P}_1(\mathcal{A})$ coincides with the set of all paranormal operators on a Hilbert space \mathcal{H} (Corollary 6).

1. Notations and definitions. An *algebra* is a vector space \mathcal{A} over the field $\Lambda (= \mathbb{R} \text{ or } \mathbb{C})$, equipped with a bilinear product such that

$$X(YZ) = (XY)Z, \quad (Y+Z)X = YX + ZX,$$

$$X(Y+Z) = XY + XZ, \quad \lambda(XY) = (\lambda X)Y = X(\lambda Y)$$

for all $X, Y, Z \in A$ and $\lambda \in \Lambda$. An algebra A is *unital* (i.e., possesses the unity), if there exists an element $(0 \neq)I \in A$ such that IX = XI = X ($X \in A$). An element X of algebra A with I is said to be *right invertible*, if there exists an element $X^{-1} \in A$ such that $XX^{-1} = I$. An algebra A is said to

^{*}E-mail: Airat.Bikchentaev@kpfu.ru.

^{**}E-mail: samialbarkish@gmail.com.

be *normed*, if \mathcal{A} admits a norm $\|\cdot\|$ such that $\|XY\| \leq \|X\|\|Y\|$ for all $X, Y \in \mathcal{A}$. Every subalgebra in \mathcal{A} , equipped with the induced norm, is a normed algebra. Recall that $T \in \mathcal{A}$ is *quasinilpotent*, if $\|T^n\|^{\frac{1}{n}} \to 0$ as $n \to \infty$; *normaloid*, if $\|T^n\| = \|T\|^n$ for all $n \in \mathbb{N}$. Let \mathcal{A} be a normed unital algebra, then \mathcal{A} admits a norm (equivalent to the initial norm) $\|\cdot\|_1$ such that $\|I\|_1 = 1$ (for example, consider an operator $\pi(X)(Y) = XY$ ($Y \in \mathcal{A}$) for every $X \in \mathcal{A}$ and put $\|X\|_1 = \|\pi(X)\|$). If $\mathcal{A}_1, \ldots, \mathcal{A}_n$ are normed algebras, then the algebra $\mathcal{A}_1 \times \cdots \times \mathcal{A}_n$, endowed with the norm

$$||(X_i)_{i=1}^n|| = \max_{1 \le i \le n} ||X_i||,$$

is a normed algebra ([6], Chap. I, § 2).

Let $\mathcal{B}(\mathcal{H})$ be the *-algebra of all linear bounded operators on a Hilbert space \mathcal{H} . An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *paranormal*, if $||T^2x||_{\mathcal{H}} \ge ||Tx||_{\mathcal{H}}^2$ for all $x \in \mathcal{H}$ with $||x||_{\mathcal{H}} = 1$ ([7–9]); *isometric*, if $T^*T = I$; *hyponormal*, if $T^*T \ge TT^*$. A C^* -algebra is a complex Banach *-algebra \mathcal{A} such that $||X^*X|| = ||X||^2$ for any $X \in \mathcal{A}$. By Gel'fand–Naimark theorem every C^* -algebra can be realized as a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} .

2. Main results. Let \mathcal{A} be a normed algebra over a field Λ , $\mathcal{A}_1 = \{X \in \mathcal{A} : ||X|| = 1\}$ and $k \in \mathbb{N}$. We introduce the class

$$\mathcal{P}_k(\mathcal{A}) = \{ T \in \mathcal{A} : \|T^{k+1}A\| \ge \|TA\|^{k+1} \text{ for all } A \in \mathcal{A}_1 \}.$$

Obviously, $0 \in \mathcal{P}_k(\mathcal{A})$ and $T \in \mathcal{P}_k(\mathcal{A}) \Leftrightarrow \lambda T \in \mathcal{P}_k(\mathcal{A})$ for all $\lambda \in \Lambda \setminus \{0\}$ and $k \in \mathbb{N}$.

Theorem 1. The class $\mathcal{P}_k(\mathcal{A})$ is $\|\cdot\|$ -closed in \mathcal{A} .

Proof. Let $\{T_n\}_{n=1}^{\infty} \subset \mathcal{P}_k(\mathcal{A})$ and $T_n \xrightarrow{\|\cdot\|} T \in \mathcal{A}$ as $n \to \infty$. Then by $\|\cdot\|$ -continuity of the product operation in $\mathcal{A} \times \mathcal{A}$ we obtain $T_n^{k+1} \xrightarrow{\|\cdot\|} T^{k+1}$ and for any $A \in \mathcal{A}_1$ we have $T_n A \xrightarrow{\|\cdot\|} TA$, $T_n^{k+1} A \xrightarrow{\|\cdot\|} T^{k+1}A$ as $n \to \infty$. Continuity of the functional $\|\cdot\|$ implies that

$$||T_nA|| \to ||TA||, \quad ||T_n^{k+1}A|| \to ||T^{k+1}A|| \text{ as } n \to \infty$$

for every $A \in \mathcal{A}_1$.

Proposition 1. Let \mathcal{A} be a dense subalgebra of a normed algebra \mathcal{B} . Then $\mathcal{P}_k(\mathcal{A}) \subset \mathcal{P}_k(\mathcal{B})$ for all $k \in \mathbb{N}$.

Proof. Consider $T \in \mathcal{P}_1(\mathcal{A})$ and $A \in \mathcal{B}_1$. There exists a sequence $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A} \setminus \{0\}$ such that $A_n \xrightarrow{\|\cdot\|} A$ as $n \to \infty$. Then $a_n = ||A_n|| \to 1$ as $n \to \infty$, hence by the triangle inequality we have

$$||a_n^{-1}A_n - A|| \le ||a_n^{-1}A_n - A_n|| + ||A_n - A|| = (a_n^{-1} - 1)a_n + ||A_n - A|| \to 0$$

as $n \to \infty$. Note that $a_n^{-1}A_n \in \mathcal{A}_1$ for all $n \in \mathbb{N}$. Now the inequality $||T^{k+1}A|| \ge ||TA||^{k+1}$ follows by $|| \cdot ||$ -continuity of the product operation in $\mathcal{B} \times \mathcal{B}$ and via continuity of the functional $|| \cdot ||$ on \mathcal{B} . \Box

Proposition 2. Let $\mathcal{A}, \ldots, \mathcal{A}_n$ be normed algebras, then $\mathcal{P}_k(\mathcal{A}_1) \times \cdots \times \mathcal{P}_k(\mathcal{A}_n) \subset \mathcal{P}_k(\mathcal{A}_1 \times \cdots \times \mathcal{A}_n)$ for all $k \in \mathbb{N}$.

Proof. Let $k \in \mathbb{N}$, $T_i \in \mathcal{P}_k(\mathcal{A}_i)$ and $(0 \neq) A_i \in \mathcal{A}_i$ for all $1 \leq i \leq n$, $\max_{1 \leq i \leq n} ||A_i|| = 1$. For all $1 \leq i \leq n$ we have

$$\left\|T_i^{k+1}\frac{A_i}{\|A_i\|}\right\| \ge \left\|T_i\frac{A_i}{\|A_i\|}\right\|^{k+1}$$

hence $||T_i^{k+1}A_i|| \ge ||T_iA_i||^{k+1} ||A_i||^{-k} \ge ||T_iA_i||^{k+1}$. Thus

$$\max_{1 \le i \le n} \|T_i^{k+1}A_i\| \ge \max_{1 \le i \le n} \|T_iA_i\|^{k+1} = (\max_{1 \le i \le n} \|T_iA_i\|)^{k+1}$$

and the proposition is proved.

RUSSIAN MATHEMATICS Vol. 62 No. 5 2018

Theorem 2. We have $\mathcal{P}_1(\mathcal{A}) \subset \mathcal{P}_k(\mathcal{A})$ for all $k \in \mathbb{N}$.

Proof is by induction. For k = 1 the assertion is evident. Let it hold for k - 1, then for every $A \in A_1$ we have

$$\|T^{k+1}A\| = \|TA\| \cdot \left\|T^k \frac{TA}{\|TA\|}\right\| \ge \|TA\| \cdot \left\|T \frac{TA}{\|TA\|}\right\|^k = \frac{\|T^2A\|^k}{\|TA\|^{k-1}} \ge \frac{\|TA\|^{2k}}{\|TA\|^{k-1}} = \|TA\|^{k+1}. \quad \Box$$

Corollary 1. Let \mathcal{A} be a normed unital algebra and ||I|| = 1. If $T \in \mathcal{P}_1(\mathcal{A})$, then T is normaloid.

Proof. We have $||T^n|| = ||T^nI|| \ge ||TI||^n = ||T||^n$ for all $n \in \mathbb{N}$.

From here we obtain

Corollary 2. Let \mathcal{A} be a normed unital algebra and ||I|| = 1. If $(0 \neq)T \in \mathcal{P}_1(\mathcal{A})$, then T cannot be quasinilpotent.

Proposition 3. Let \mathcal{A} be a normed unital algebra.

(i) If $T \in \mathcal{A}$ is such that ||TX|| = ||X|| for all $X \in \mathcal{A}$, then $T \in \mathcal{P}_1(\mathcal{A})$. (ii) If $T \in \mathcal{P}_{k-1}(\mathcal{A})$ and $T^k \in \mathcal{P}_{n-1}(\mathcal{A})$, then $T \in \mathcal{P}_{kn-1}(\mathcal{A})$ for all $k, n \geq 2$.

Proof. (i) For any $A \in \mathcal{A}_1$ we have $1 = ||A|| = ||A||^2$, hence $1 = ||TA|| = ||T(TA)|| = ||TA||^2$. (ii) For any $A \in \mathcal{A}_1$ we have $||T^{kn}A|| = ||(T^k)^n A|| \ge ||T^kA||^n \ge ||TA||^{kn}$.

Proposition 4. Let \mathcal{A} be a normed algebra, $X \in \mathcal{A}_1$ and $T \in \mathcal{A}$ be such that XTX = T. If $k \in \mathbb{N}$ is odd and $T \in \mathcal{P}_k(\mathcal{A})$, then $XT \in \mathcal{P}_k(\mathcal{A})$.

Proof. Obviously, $(XT)^{k+1} = (XTX \cdot T)^{\frac{k+1}{2}} = T^{k+1}$ and $\|(XT)^{k+1}A\| = \|T^{k+1}A\| \ge \|TA\|^{k+1} \ge \|XTA\|^{k+1}$ for all $A \in A$

for all $A \in \mathcal{A}_1$.

Proposition 5. Let a normed algebra \mathcal{A} be unital. Then $\lambda I \in \mathcal{P}_1(\mathcal{A})$ for all $\lambda \in \Lambda$ and the following assertions hold true:

(i) if $T \in \mathcal{A}_1$ is so that $T^{k+1} = I$, then $T \in \mathcal{P}_k(\mathcal{A})$, (ii) if $T = T^{k+1} \in \mathcal{P}_k(\mathcal{A})$ and ||I|| = 1, then $||T|| \in \{0, 1\}$.

Proof. (i) We have $1 = ||T^{k+1}A|| = ||A|| \ge ||TA|| \ge ||TA||^{k+1}$ for all $A \in A_1$ and $k \in \mathbb{N}$.

(ii) For all $T = T^{k+1} \in \mathcal{A}$ we have $||T|| = ||T^{k+1}|| \le ||T||^{k+1}$. So, $||T|| \in \{0\} \cup [1, \infty)$. If $T \in \mathcal{P}_k(\mathcal{A})$, then $||TA|| = ||T^{k+1}A|| \ge ||TA||^{k+1}$, hence $||TA|| \in [0, 1]$ for all $A \in \mathcal{A}_1$. In particular, $||T|| \le 1$ for A = I. Therefore $||T|| \in \{0, 1\}$.

Proposition 6. If \mathcal{A} is commutative (i.e., XY = YX for all $X, Y \in \mathcal{A}$) normed algebra and $||T^2|| = ||T||^2$ for all $T \in \mathcal{A}$, then $\mathcal{P}_k(\mathcal{A}) = \mathcal{A}$ for all $k \in \mathbb{N}$.

Proof. By Theorem 2 it suffices to check the assertion for k = 1. For all $T \in \mathcal{A}$ and $A \in \mathcal{A}_1$ we have $T^2A = TAT$ and $||T^2A|| = ||TAT|| \ge ||TATA|| = ||TA||^2$.

Theorem 3. Let \mathcal{A} be a normed unital algebra and $U, V \in \mathcal{A}_1$ be such that VU = I. If $T \in \mathcal{P}_k(\mathcal{A})$, then $UTV \in \mathcal{P}_k(\mathcal{A})$ for all $k \in \mathbb{N}$.

Proof. We have $(UTV)^{k+1} = UT^{k+1}V$. It is necessary to show that

$$||(UTV)^{k+1}A|| = ||UT^{k+1}VA|| \ge ||UTVA||^{k+1}$$
 for all $A \in \mathcal{A}_1$.

If VA = 0, then the assertion is evident. Assume that $VA \neq 0$, then $0 < ||VA|| \le 1$ and

$$\begin{aligned} \|UT^{k+1}VA\| &\ge \|VUT^{k+1}VA\| = \|T^{k+1}VA\| = \left\|T^{k+1}\frac{VA}{\|VA\|}\right\| \|VA\| \\ &\ge \left\|T\frac{VA}{\|VA\|}\right\|^{k+1} \|VA\| = \frac{\|TVA\|^{k+1}}{\|VA\|^{k}} \ge \|TVA\|^{k+1} \ge \|UTVA\|^{k+1}. \quad \Box \end{aligned}$$

Corollary 3. Let \mathcal{A} be a unital C^* -algebra. If $T \in \mathcal{P}_k(\mathcal{A})$, then $UTU^* \in \mathcal{P}_k(\mathcal{A})$ for all isometries $U \in \mathcal{A}$ and $k \in \mathbb{N}$.

Corollary 3 for k = 1 generalizes assertion (ii) of theorem 2 from [10].

Theorem 4. Let \mathcal{A} be a normed unital algebra. If an element $T \in \mathcal{P}_1(\mathcal{A})$ is right invertible, then any right inverse element T^{-1} belongs to $\mathcal{P}_1(\mathcal{A})$.

Proof. Consider $A \in \mathcal{A}_1$, $T^{-2} = (T^{-1})^2$. Let us show that $||T^{-2}A|| \ge ||T^{-1}A||^2$. If $T^{-2}A = 0$, then $T^{-1}A = T \cdot T^{-2}A = 0$ and the assertion holds. If $T^{-2}A \neq 0$, then

$$\left\| T^2 \frac{T^{-2}A}{\|T^{-2}A\|} \right\| \ge \left\| T \frac{T^{-2}A}{\|T^{-2}A\|} \right\|^2,$$
$$\frac{\|A\|}{\|T^{-2}A\|} = \frac{1}{\|T^{-2}A\|} \ge \frac{\|T^{-1}A\|^2}{\|T^{-2}A\|^2}.$$

i.e., $\frac{\|A\|}{\|T^{-2}A\|} = \frac{1}{\|T^{-2}A\|} \ge \frac{\|A^{-}A\|}{\|T^{-2}A\|^2}$. **Corollary 4.** Let *A* be a normed unital algebra over the field \mathbb{C} and *T*.

Corollary 4. Let \mathcal{A} be a normed unital algebra over the field \mathbb{C} and $T \in \mathcal{P}_1(\mathcal{A})$ be such that the spectrum $\sigma(T)$ lies on the unit circle, then ||TX|| = ||X|| for all $X \in \mathcal{A}$.

Proof. Since $\sigma(T)$ lies on the unit circle, the relation $||T|| = ||T^{-1}|| = 1$ holds by Corollary 1 and Theorem 4. For all $(0 \neq) X \in \mathcal{A}$ we have

$$\|X\| \ge \|TX\| = \|T^{-1}X\| \left\| T^2 \frac{T^{-1}X}{\|T^{-1}X\|} \right\| \ge \|T^{-1}X\| \left\| T \frac{T^{-1}X}{\|T^{-1}X\|} \right\|^2 = \frac{\|X\|^2}{\|T^{-1}X\|} \ge \|X\|.$$

Lemma 1. Let \mathcal{A} be a normed algebra. If $T \in \mathcal{P}_1(\mathcal{A})$, then

$$||T^{3}A|| \ge ||T^{2}A|| \cdot ||TA|| \text{ for all } A \in \mathcal{A}_{1}.$$
(1)

Proof. Without loss of generality assume that $TA \neq 0$, then

$$\|T^{3}A\| = \|TA\| \cdot \left\|T^{2}\frac{TA}{\|TA\|}\right\| \ge \|TA\| \cdot \left\|T\frac{TA}{\|TA\|}\right\|^{2} = \frac{\|T^{2}A\|^{2}}{\|TA\|} \ge \frac{\|T^{2}A\| \cdot \|TA\|^{2}}{\|TA\|} = \|T^{2}A\| \cdot \|TA\|.$$

Lemma 2. Let \mathcal{A} be a normed algebra. If $T \in \mathcal{P}_1(\mathcal{A})$, then

$$||T^{k+1}A||^{2} \ge ||T^{k}A||^{2} \cdot ||T^{2}A|| \text{ for all } A \in \mathcal{A}_{1} \text{ and } k \in \mathbb{N}.$$
 (2_k)

Proof. We carry out the proof by induction. For k = 1 we have

$$||T^{2}A||^{2} = ||T^{2}A|| \cdot ||T^{2}A|| \ge ||TA||^{2} \cdot ||T^{2}A||$$

and (2_1) holds. Let (2_k) hold for k and $TA \neq 0$, then

$$\|T^{k+2}A\|^{2} = \|TA\|^{2} \cdot \left\|T^{k+1}\frac{TA}{\|TA\|}\right\|^{2} \ge \|TA\|^{2} \cdot \left\|T^{k}\frac{TA}{\|TA\|}\right\|^{2} \cdot \left\|T^{2}\frac{TA}{\|TA\|}\right\|$$

RUSSIAN MATHEMATICS Vol. 62 No. 5 2018

$$= \|T^{k+1}A\|^2 \frac{\|T^3A\|}{\|TA\|} \ge \|T^{k+1}A\|^2 \cdot \|T^2A\|$$

via (1) and (2_k) . Hence (2_{k+1}) holds.

Theorem 5. Let \mathcal{A} be a normed algebra. If $T \in \mathcal{P}_1(\mathcal{A})$, then $T^n \in \mathcal{P}_1(\mathcal{A})$ for all $n \in \mathbb{N}$.

Proof. Again the proof is by induction. It suffices to show that if $T, T^k \in \mathcal{P}_1(\mathcal{A})$, then $T^{k+1} \in \mathcal{P}_1(\mathcal{A})$. Assume that $A \in A_1$ and $T^2 A \neq 0$, then

$$\|T^{2(k+1)}A\| = \left\|T^{2k}\frac{T^2A}{\|T^2A\|}\right\| \cdot \|T^2A\| \ge \left\|T^k\frac{T^2A}{\|T^2A\|}\right\|^2 \cdot \|T^2A\|$$
$$= \frac{\|T^{k+2}A\|^2}{\|T^2A\|} \ge \frac{\|T^{k+1}A\|^2 \cdot \|T^2A\|}{\|T^2A\|} = \|T^{k+1}A\|^2$$
a (2_{k+1}) of Lemma 2.

via (2_{k+1}) of Lemma 2.

Remark 1. Theorem 5 allows us to find another proof of Corollary 1. For elements $A = I, T \in \mathcal{P}_1(\mathcal{A})$ and for all $n \in \mathbb{N}$ we have

$$||T^{2^{n}}|| = ||T^{2^{n}}A|| \ge ||T^{2^{n-1}}A||^{2} = ||T^{2^{n-1}}||^{2} \ge ||T^{2^{n-2}}A||^{2^{2}} = ||T^{2^{n-2}}||^{2^{2}} \ge \cdots$$
$$\ge ||TA||^{2^{n}} = ||T||^{2^{n}}.$$

The sequence $\{\|X^n\|^{1/n}\}$ converges as $n \to \infty$ for every $X \in \mathcal{A}$, and its limit equals $\|X^n\|^{1/n}$ ([6], Chap. I, § 2, proposition 1). Hence $\lim_{n \to \infty} ||T^n||^{1/n} = \lim_{n \to \infty} ||T^{2n}||^{1/2^n} = \inf_n ||T^n||^{1/n} \ge ||T||$ and $||T^n||^{1/n} \ge ||T||$, i.e., $||T^n|| \ge ||T||^n$ for all $n \in \mathbb{N}$ and normaloid T.

By Theorem 1 of [10] we have

Corollary 5. If $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then the class $\mathcal{P}_1(\mathcal{A})$ coincides with the class of all paranormal operators on \mathcal{H} .

Since the product operation is jointly sequentially continuous in the strong operator topology in $\mathcal{B}(\mathcal{H})$ ([11], problem 93), Corollary 5 yields

Corollary 6. If $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then the class $\mathcal{P}_1(\mathcal{A})$ is sequentially closed in the strong operator topology.

Corollary 7. If $\mathcal{A} = \mathcal{B}(\mathcal{H})$, then $\mathcal{P}_1(\mathcal{A})$ contains a non-hyponormal operator.

Proof. P. Halmos ([11], problem 164) presented an example of a hyponormal operator $T \in \mathcal{A}$ such that T^2 is non-hyponormal. We have $T \in \mathcal{P}_1(\mathcal{A})$ by item (i) of theorem 2 of [10], hence $T^2 \in \mathcal{P}_1(\mathcal{A})$ by Theorem 5.

Remark 2. If $\mathcal{A} = \mathbb{M}_2(\mathbb{C})$, then the class $\mathcal{P}_1(\mathcal{A})$ is the set of all normal matrices from \mathcal{A} . For $\mathcal{A} = \mathcal{B}(\mathcal{H})$ Theorem 2 was established in [12] and [13], Theorem 4 (for invertible T) and Corollary 4 were proved in [12], and Lemmas 1, 2 and Theorem 5 were proved in [8]. Here we modify the corresponding proofs.

ACKNOWLEDGMENTS

This work was supported by the subsidies allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.1515.2017/4.6, 1.9773.2017/8.9).

REFERENCES

- 1. Bikchentaev, A. M. "On Normal τ -Measurable Operators Affiliated With Semifinite von Neumann Algebras", Math. Notes 96, No. 3-4, 332-341 (2014).
- 2. Akhramovich, M. V., Muratov, M. A., and Shul'man, V. S. "Fuglede–Putnam Theorem in Algebras With Involutions", Math. Notes 98, No. 3-4, 537-549 (2015).
- 3. Bikchentaev, A. M. "On Idempotent τ -Measurable Operators Affiliated to a von Neumann Algebra", Math. Notes 100, No. 3-4, 515-525 (2016).
- 4. Aleksandrov, A. B. and Peller, V. V. "Krein's Trace Formula for Unitary Operators and Operator Lipschitz Functions", Funct. Anal. Appl. 50, No. 3, 167–175 (2016).
- 5. Bikchentaev, A. M. "Differences of Idempotents in C*-Algebras", Sib. Math. J. 58, No. 2, 183–189 (2017).
- 6. Bourbaki, N. Théories Spectrales (Hermann, Paris, 1967; Mir, Moscow, 1972).
- 7. Istrăţescu, V. "On Some Hyponormal Operators", Pacific J. Math. 22, No. 3, 413–417 (1967).
 8. Furuta, T. "On the Class of Paranormal Operators", Proc. Japan Acad. 43, No. 7, 594–598 (1967).
- 9. Kubrusly, C. S. Hilbert Space Operators. A Problem Solving Approach (Birkhäuser Boston, Inc., Boston, MA, 2003).
- 10. Bikchentaev, A. M. "Two Classes of τ -Measurable Operators Affiliated With a von Neumann Algebra", Russian Mathematics 61, No. 1, 76-80 (2017).
- 11. Halmos, P. R. A Hilbert Space Problem Book (D. van Norstand Company, Inc., Princeton, New Jersey, Toronto, London, 1967; Mir, Moscow, 1970).
- 12. Istrătescu, V., Saito, T., Yoshino, T. "On a Class of Operators", Tôhoku Math. J. 18, No. 4, 410–413 (1966).
- 13. Furuta, T., Horie, M., Nakamoto, R. "A Remark on a Class of Operators", Proc. Japan Acad. 43, No. 7, 607-609 (1967).

Authorized translation