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Abstract—For a normed algebra A and natural numbers k we introduce and investigate the ‖ · ‖-
closed classes Pk(A). We show that P1(A) is a subset of Pk(A) for all k. If T in P1(A), then T n

lies in P1(A) for all natural n. If A is unital, U, V ∈ A are such that ‖U‖ = ‖V ‖ = 1, V U = I and
T lies in Pk(A), then UTV lies in Pk(A) for all natural k. Let A be unital, then 1) if an element T in
P1(A) is right invertible, then any right inverse element T−1 lies in P1(A); 2) for ‖I‖ = 1 the class
P1(A) consists of normaloid elements; 3) if the spectrum of an element T , T ∈ P1(A) lies on the
unit circle, then ‖TX‖ = ‖X‖ for all X ∈ A. If A = B(H), then the class P1(A) coincides with the
set of all paranormal operators on a Hilbert space H.
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Introduction. Investigation of different subsets in normed algebras and in ∗-algebras of operators is
an actual problem of functional analysis (see, e.g., [1–5] for classes of hyponormal, normal, idempotent,
unitary operators and differences of idempotents, respectively). In this paper for a normed algebra A and
k ∈ N we introduce and investigate ‖ · ‖-closed classes

Pk(A) = {T ∈ A : ‖T k+1A‖ ≥ ‖TA‖k+1 for all A ∈ A with ‖A‖ = 1}.
It is shown that P1(A) ⊂ Pk(A) for all k ∈ N (Theorem 2). If A is a dense subalgebra of normed
algebra B, then Pk(A) ⊂ Pk(B) for all k ∈ N (Proposition 1). If T ∈ P1(A), then T n ∈ P1(A) for all
n ∈ N (Theorem 5). If A is unital, U, V ∈ A are such that ‖U‖ = ‖V ‖ = 1, V U = I and T ∈ Pk(A),
then UTV ∈ Pk(A) for all k ∈ N (Theorem 3). In particular, if A is a unital C∗-algebra and T ∈ Pk(A),
then UTU∗ ∈ Pk(A) for all isometries U ∈ A and k ∈ N (Corollary 3). If A is commutative and
‖T 2‖ = ‖T‖2 for all T ∈ A, then P1(A) = A (Proposition 6).

Let A be unital, then 1) if an element T ∈ P1(A) is right invertible, then any right inverse element
T−1 lies in P1(A) (Theorem 4); 2) for ‖I‖ = 1 the class P1(A) consists of normaloid elements (Corollary
1); 3) if the spectrum of an element T , T ∈ P1(A) lies on the unit circle, then ‖TX‖ = ‖X‖ for all X ∈ A
(Corollary 4). If A = B(H), then the class P1(A) coincides with the set of all paranormal operators on a
Hilbert space H (Corollary 6).

1. Notations and definitions. An algebra is a vector space A over the field Λ (= R or C), equipped
with a bilinear product such that

X(Y Z) = (XY )Z, (Y + Z)X = Y X + ZX,

X(Y + Z) = XY + XZ, λ(XY ) = (λX)Y = X(λY )

for all X,Y,Z ∈ A and λ ∈ Λ. An algebra A is unital (i.e., possesses the unity), if there exists an
element (0 �=)I ∈ A such that IX = XI = X (X ∈ A). An element X of algebra A with I is said to
be right invertible, if there exists an element X−1 ∈ A such that XX−1 = I. An algebra A is said to
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PARANORMAL ELEMENTS IN NORMED ALGEBRA 11

be normed, if A admits a norm ‖ · ‖ such that ‖XY ‖ ≤ ‖X‖‖Y ‖ for all X,Y ∈ A. Every subalgebra
in A, equipped with the induced norm, is a normed algebra. Recall that T ∈ A is quasinilpotent, if
‖T n‖ 1

n → 0 as n → ∞; normaloid, if ‖T n‖ = ‖T‖n for all n ∈ N. Let A be a normed unital algebra,
then A admits a norm (equivalent to the initial norm) ‖ · ‖1 such that ‖I‖1 = 1 (for example, consider
an operator π(X)(Y ) = XY (Y ∈ A) for every X ∈ A and put ‖X‖1 = ‖π(X)‖). If A1, . . . ,An are
normed algebras, then the algebra A1 × · · · × An, endowed with the norm

‖(Xi)ni=1‖ = max
1≤i≤n

‖Xi‖,

is a normed algebra ([6], Chap. I, § 2).
Let B(H) be the ∗-algebra of all linear bounded operators on a Hilbert space H. An operator T ∈

B(H) is said to be paranormal, if ‖T 2x‖H ≥ ‖Tx‖2
H for all x ∈ H with ‖x‖H = 1 ([7–9]); isometric,

if T ∗T = I; hyponormal, if T ∗T ≥ TT ∗. A C∗-algebra is a complex Banach ∗-algebra A such that
‖X∗X‖ = ‖X‖2 for any X ∈ A. By Gel’fand–Naimark theorem every C∗-algebra can be realized as a
C∗-subalgebra of B(H) for some Hilbert space H.

2. Main results. Let A be a normed algebra over a field Λ, A1 = {X ∈ A : ‖X‖ = 1} and k ∈ N.
We introduce the class

Pk(A) = {T ∈ A : ‖T k+1A‖ ≥ ‖TA‖k+1 for all A ∈ A1}.
Obviously, 0 ∈ Pk(A) and T ∈ Pk(A) ⇔ λT ∈ Pk(A) for all λ ∈ Λ \ {0} and k ∈ N.

Theorem 1. The class Pk(A) is ‖ · ‖-closed in A.

Proof. Let {Tn}∞n=1 ⊂ Pk(A) and Tn
‖·‖−−→ T ∈ A as n → ∞. Then by ‖ · ‖-continuity of the product

operation in A×A we obtain T k+1
n

‖·‖−−→ T k+1 and for any A ∈ A1 we have TnA
‖·‖−−→ TA, T k+1

n A
‖·‖−−→

T k+1A as n → ∞. Continuity of the functional ‖ · ‖ implies that

‖TnA‖ → ‖TA‖, ‖T k+1
n A‖ → ‖T k+1A‖ as n → ∞

for every A ∈ A1.

Proposition 1. Let A be a dense subalgebra of a normed algebra B. Then Pk(A) ⊂ Pk(B) for all
k ∈ N.

Proof. Consider T ∈ P1(A) and A ∈ B1. There exists a sequence {An}∞n=1 ⊂ A \ {0} such that

An
‖·‖−−→ A as n → ∞. Then an = ‖An‖ → 1 as n → ∞, hence by the triangle inequality we have

‖a−1
n An − A‖ ≤ ‖a−1

n An − An‖ + ‖An − A‖ = (a−1
n − 1)an + ‖An − A‖ → 0

as n → ∞. Note that a−1
n An ∈ A1 for all n ∈ N. Now the inequality ‖T k+1A‖ ≥ ‖TA‖k+1 follows by

‖ · ‖-continuity of the product operation in B × B and via continuity of the functional ‖ · ‖ on B.

Proposition 2. Let A, . . . ,An be normed algebras, then Pk(A1) × · · · × Pk(An) ⊂ Pk(A1 × · · · ×
An) for all k ∈ N.

Proof. Let k∈N, Ti∈Pk(Ai) and (0 �=)Ai∈Ai for all 1 ≤ i ≤ n, max
1≤i≤n

‖Ai‖ = 1. For all 1 ≤ i ≤ n we

have
∥
∥
∥
∥
T k+1

i

Ai

‖Ai‖

∥
∥
∥
∥
≥

∥
∥
∥
∥
Ti

Ai

‖Ai‖

∥
∥
∥
∥

k+1

,

hence ‖T k+1
i Ai‖ ≥ ‖TiAi‖k+1‖Ai‖−k ≥ ‖TiAi‖k+1. Thus

max
1≤i≤n

‖T k+1
i Ai‖ ≥ max

1≤i≤n
‖TiAi‖k+1 = ( max

1≤i≤n
‖TiAi‖)k+1

and the proposition is proved.
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12 BIKCHENTAEV, ABED

Theorem 2. We have P1(A) ⊂ Pk(A) for all k ∈ N.

Proof is by induction. For k = 1 the assertion is evident. Let it hold for k − 1, then for every A ∈ A1 we
have

‖T k+1A‖ = ‖TA‖ ·
∥
∥
∥
∥
T k TA

‖TA‖

∥
∥
∥
∥
≥ ‖TA‖ ·

∥
∥
∥
∥
T

TA

‖TA‖

∥
∥
∥
∥

k

=
‖T 2A‖k

‖TA‖k−1
≥ ‖TA‖2k

‖TA‖k−1
= ‖TA‖k+1. �

Corollary 1. Let A be a normed unital algebra and ‖I‖ = 1. If T ∈ P1(A), then T is normaloid.

Proof. We have ‖T n‖ = ‖T nI‖ ≥ ‖TI‖n = ‖T‖n for all n ∈ N.

From here we obtain

Corollary 2. Let A be a normed unital algebra and ‖I‖ = 1. If (0 �=)T ∈ P1(A), then T cannot be
quasinilpotent.

Proposition 3. Let A be a normed unital algebra.

(i) If T ∈ A is such that ‖TX‖ = ‖X‖ for all X ∈ A, then T ∈ P1(A).

(ii) If T ∈ Pk−1(A) and T k ∈ Pn−1(A), then T ∈ Pkn−1(A) for all k, n ≥ 2.

Proof. (i) For any A ∈ A1 we have 1 = ‖A‖ = ‖A‖2, hence 1 = ‖TA‖ = ‖T (TA)‖ = ‖TA‖2.

(ii) For any A ∈ A1 we have ‖T knA‖ = ‖(T k)nA‖ ≥ ‖T kA‖n ≥ ‖TA‖kn.

Proposition 4. Let A be a normed algebra, X ∈ A1 and T ∈ A be such that XTX = T . If k ∈ N is
odd and T ∈ Pk(A), then XT ∈ Pk(A).

Proof. Obviously, (XT )k+1 = (XTX · T )
k+1
2 = T k+1 and

‖(XT )k+1A‖ = ‖T k+1A‖ ≥ ‖TA‖k+1 ≥ ‖XTA‖k+1

for all A ∈ A1.

Proposition 5. Let a normed algebra A be unital. Then λI ∈ P1(A) for all λ ∈ Λ and the following
assertions hold true:

(i) if T ∈ A1 is so that T k+1 = I, then T ∈ Pk(A),

(ii) if T = T k+1 ∈ Pk(A) and ‖I‖ = 1, then ‖T‖ ∈ {0, 1}.

Proof. (i) We have 1 = ‖T k+1A‖ = ‖A‖ ≥ ‖TA‖ ≥ ‖TA‖k+1 for all A ∈ A1 and k ∈ N.

(ii) For all T = T k+1 ∈ A we have ‖T‖ = ‖T k+1‖ ≤ ‖T‖k+1. So, ‖T‖ ∈ {0} ∪ [1,∞). If T ∈ Pk(A),
then ‖TA‖ = ‖T k+1A‖ ≥ ‖TA‖k+1, hence ‖TA‖ ∈ [0, 1] for all A ∈ A1. In particular, ‖T‖ ≤ 1 for
A = I. Therefore ‖T‖ ∈ {0, 1}.

Proposition 6. If A is commutative (i.e., XY = Y X for all X,Y ∈ A) normed algebra and
‖T 2‖ = ‖T‖2 for all T ∈ A, then Pk(A) = A for all k ∈ N.

Proof. By Theorem 2 it suffices to check the assertion for k = 1. For all T ∈ A and A ∈ A1 we have
T 2A = TAT and ‖T 2A‖ = ‖TAT‖ ≥ ‖TATA‖ = ‖TA‖2.

Theorem 3. Let A be a normed unital algebra and U, V ∈ A1 be such that V U = I. If T ∈ Pk(A),
then UTV ∈ Pk(A) for all k ∈ N.

RUSSIAN MATHEMATICS Vol. 62 No. 5 2018



PARANORMAL ELEMENTS IN NORMED ALGEBRA 13

Proof. We have (UTV )k+1 = UT k+1V . It is necessary to show that

‖(UTV )k+1A‖ = ‖UT k+1V A‖ ≥ ‖UTV A‖k+1 for all A ∈ A1.

If V A = 0, then the assertion is evident. Assume that V A �= 0, then 0 < ‖V A‖ ≤ 1 and

‖UT k+1V A‖ ≥ ‖V UT k+1V A‖ = ‖T k+1V A‖ =
∥
∥
∥
∥
T k+1 V A

‖V A‖

∥
∥
∥
∥
‖V A‖

≥
∥
∥
∥
∥
T

V A

‖V A‖

∥
∥
∥
∥

k+1

‖V A‖ =
‖TV A‖k+1

‖V A‖k
≥ ‖TV A‖k+1 ≥ ‖UTV A‖k+1. �

Corollary 3. Let A be a unital C∗-algebra. If T ∈ Pk(A), then UTU∗ ∈ Pk(A) for all isometries U ∈ A
and k ∈ N.

Corollary 3 for k = 1 generalizes assertion (ii) of theorem 2 from [10].

Theorem 4. Let A be a normed unital algebra. If an element T ∈ P1(A) is right invertible, then
any right inverse element T−1 belongs to P1(A).

Proof. Consider A ∈ A1, T−2 = (T−1)2. Let us show that ‖T−2A‖ ≥ ‖T−1A‖2. If T−2A = 0, then
T−1A = T · T−2A = 0 and the assertion holds. If T−2A �= 0, then

∥
∥
∥
∥
T 2 T−2A

‖T−2A‖

∥
∥
∥
∥
≥

∥
∥
∥
∥
T

T−2A

‖T−2A‖

∥
∥
∥
∥

2

,

i.e., ‖A‖
‖T−2A‖ = 1

‖T−2A‖ ≥ ‖T−1A‖2

‖T−2A‖2 .

Corollary 4. Let A be a normed unital algebra over the field C and T ∈ P1(A) be such that the spectrum
σ(T ) lies on the unit circle, then ‖TX‖ = ‖X‖ for all X ∈ A.

Proof. Since σ(T ) lies on the unit circle, the relation ‖T‖ = ‖T−1‖ = 1 holds by Corollary 1 and
Theorem 4. For all (0 �=)X ∈ A we have

‖X‖ ≥ ‖TX‖ = ‖T−1X‖
∥
∥
∥
∥
T 2 T−1X

‖T−1X‖

∥
∥
∥
∥
≥ ‖T−1X‖

∥
∥
∥
∥
T

T−1X

‖T−1X‖

∥
∥
∥
∥

2

=
‖X‖2

‖T−1X‖ ≥ ‖X‖. �

Lemma 1. Let A be a normed algebra. If T ∈ P1(A), then

‖T 3A‖ ≥ ‖T 2A‖ · ‖TA‖ for all A ∈ A1. (1)

Proof. Without loss of generality assume that TA �= 0, then

‖T 3A‖ = ‖TA‖ ·
∥
∥
∥
∥
T 2 TA

‖TA‖

∥
∥
∥
∥
≥ ‖TA‖ ·

∥
∥
∥
∥
T

TA

‖TA‖

∥
∥
∥
∥

2

=
‖T 2A‖2

‖TA‖ ≥ ‖T 2A‖ · ‖TA‖2

‖TA‖ = ‖T 2A‖ · ‖TA‖.
�

Lemma 2. Let A be a normed algebra. If T ∈ P1(A), then

‖T k+1A‖2 ≥ ‖T kA‖2 · ‖T 2A‖ for all A ∈ A1 and k ∈ N. (2k)

Proof. We carry out the proof by induction. For k = 1 we have

‖T 2A‖2 = ‖T 2A‖ · ‖T 2A‖ ≥ ‖TA‖2 · ‖T 2A‖
and (21) holds. Let (2k) hold for k and TA �= 0, then

‖T k+2A‖2 = ‖TA‖2 ·
∥
∥
∥
∥
T k+1 TA

‖TA‖

∥
∥
∥
∥

2

≥ ‖TA‖2 ·
∥
∥
∥
∥
T k TA

‖TA‖

∥
∥
∥
∥

2

·
∥
∥
∥
∥
T 2 TA

‖TA‖

∥
∥
∥
∥
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= ‖T k+1A‖2 ‖T 3A‖
‖TA‖ ≥ ‖T k+1A‖2 · ‖T 2A‖

via (1) and (2k). Hence (2k+1) holds.

Theorem 5. Let A be a normed algebra. If T ∈ P1(A), then T n ∈ P1(A) for all n ∈ N.

Proof. Again the proof is by induction. It suffices to show that if T, T k ∈ P1(A), then T k+1 ∈ P1(A).
Assume that A ∈ A1 and T 2A �= 0, then

‖T 2(k+1)A‖ =
∥
∥
∥
∥
T 2k T 2A

‖T 2A‖

∥
∥
∥
∥
· ‖T 2A‖ ≥

∥
∥
∥
∥
T k T 2A

‖T 2A‖

∥
∥
∥
∥

2

· ‖T 2A‖

=
‖T k+2A‖2

‖T 2A‖ ≥ ‖T k+1A‖2 · ‖T 2A‖
‖T 2A‖ = ‖T k+1A‖2

via (2k+1) of Lemma 2.

Remark 1. Theorem 5 allows us to find another proof of Corollary 1. For elements A = I, T ∈ P1(A)
and for all n ∈ N we have

‖T 2n‖ = ‖T 2n
A‖ ≥ ‖T 2n−1

A‖2 = ‖T 2n−1‖2 ≥ ‖T 2n−2
A‖22

= ‖T 2n−2‖22 ≥ · · ·
≥ ‖TA‖2n

= ‖T‖2n
.

The sequence {‖Xn‖1/n} converges as n → ∞ for every X ∈ A, and its limit equals inf
n

‖Xn‖1/n

([6], Chap. I, § 2, proposition 1). Hence lim
n→∞

‖T n‖1/n = lim
n→∞

‖T 2n‖1/2n
= inf

n
‖T n‖1/n ≥ ‖T‖ and

‖T n‖1/n ≥ ‖T‖, i.e., ‖T n‖ ≥ ‖T‖n for all n ∈ N and normaloid T .

By Theorem 1 of [10] we have

Corollary 5. If A = B(H), then the class P1(A) coincides with the class of all paranormal operators
on H.

Since the product operation is jointly sequentially continuous in the strong operator topology in B(H)
([11], problem 93), Corollary 5 yields

Corollary 6. If A = B(H), then the class P1(A) is sequentially closed in the strong operator topology.

Corollary 7. If A = B(H), then P1(A) contains a non-hyponormal operator.

Proof. P. Halmos ([11], problem 164) presented an example of a hyponormal operator T ∈ A such that
T 2 is non-hyponormal. We have T ∈ P1(A) by item (i) of theorem 2 of [10], hence T 2 ∈ P1(A) by
Theorem 5.

Remark 2. If A = M2(C), then the class P1(A) is the set of all normal matrices from A. For A = B(H)
Theorem 2 was established in [12] and [13], Theorem 4 (for invertible T ) and Corollary 4 were proved in
[12], and Lemmas 1, 2 and Theorem 5 were proved in [8]. Here we modify the corresponding proofs.
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12. Istrăţescu, V., Saito, T., Yoshino, T. “On a Class of Operators”, Tôhoku Math. J. 18, No. 4, 410–413 (1966).
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