Published for SISSA by 2 Springer

RECEIVED: June 18, 2017 ACCEPTED: July 12, 2017 PUBLISHED: July 25, 2017

Calibrated entanglement entropy

I. Bakhmatov, a,b N.S. Deger, c J. Gutowski, d E. Ó Colgáin a and H. Yavartanoo e
^a Asia Pacific Center for Theoretical Physics,
Postech, Pohang 37673, Korea
^b Institute of Physics, Kazan Federal University,
Kremlevskaya 16a, Kazan, 420111, Russia
^c Department of Mathematics, Bogazici University,
Bebek, 34342, Istanbul, Turkey
^d Department of Mathematics, University of Surrey Guildford,
388 Stag Hill, Guildford, GU2 7XH, U.K.
^e State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, Beijing 100190, China
E-mail: ilya.bakhmatov@apctp.org, sadik.deger@boun.edu.tr,
j.gutowski@surrey.ac.uk, ocolgain.eoin@apctp.org, yavar@itp.ac.cn
ABSTRACT: The Ryu-Takayanagi prescription reduces the problem of calculating e

ABSTRACT: The Ryu-Takayanagi prescription reduces the problem of calculating entanglement entropy in CFTs to the determination of minimal surfaces in a dual anti-de Sitter geometry. For 3D gravity theories and BTZ black holes, we identify the minimal surfaces as special Lagrangian cycles calibrated by the real part of the holomorphic one-form of a spacelike hypersurface. We show that (generalised) calibrations provide a unified way to determine holographic entanglement entropy from minimal surfaces, which is applicable to warped AdS₃ geometries. We briefly discuss generalisations to higher dimensions.

KEYWORDS: AdS-CFT Correspondence, Gauge-gravity correspondence, Holography and condensed matter physics (AdS/CMT)

ARXIV EPRINT: 1705.08319