КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Институт геологии и нефтегазовых технологий Кафедра региональной геологии и полезных ископаемых

ВЕЩЕСТВЕННЫЙ СОСТАВ РУД, ИХ СТРОЕНИЕ И МИНЕРАЛЬНЫЕ ПАРАГЕНЕЗИСЫ

Учебное пособие по курсу «Геология полезных ископаемых» для студентов направления «Геология» (05.03.01)

Казань – 2017

Печатается по решению Редакционно-издательского совета ФГАОУ ВПО «Казанский (Приволжский) федеральный университет»

методической комиссии Института геологии и нефтегазовых технологий Протокол N2 I om I3 октября 2017 I2.

заседания кафедры региональной геологии и полезных ископаемых Протокол № 1 от 4 сентября 2017 г.

Составители:

И.Н. Пеньков, Р.Р. Хасанов

Рецензент:

доктор геол.-мин. наук, доц. Р.Х. Сунгатуллин

Вещественный состав руд, их строение и минеральные парагенезисы. Учебное пособие. – Казань: К(П)ФУ, 2017. – 21 с.

Настоящее учебно-методическое пособие является необходимым подспорьем к лекционному курсу «Геология полезных ископаемых», читаемому на IV курсе. Оно преследует цель — ознакомление с вещественным составом полезных ископаемых по генетическим группам. При этом основное внимание обращено на макроскопическое изучение образцов руд, имеющихся в коллекциях кафедры полезных ископаемых.

Основные решаемые задачи: 1) определение минерального состава руд и их текстурно-структурных особенностей; 2) выделение парагенетических ассоциаций руд; 3) оценка способа отложения минерального вещества и последовательности минералообразования в рудах; 4) определение генетического типа и формационной принадлежности месторождения.

Излагаемый в пособии материал в какой-то мере предваряет более детальное исследование вещества руд, проводимое с помощью минераграфии.

Казанский (Приволжский) федеральный университет, 2017 © Пеньков И.Н., Хасанов Р.Р. 2017

ОГЛАВЛЕНИЕ

·	Стр.
1. ВЕЩЕСТВЕННЫЙ СОСТАВ РУД	4
2. ТЕКСТУРЫ И СТРУКТУРЫ РУД	5
2.1. Текстуры	5
2.2. Структуры	9
3. ПАРАГЕНЕЗИС МИНЕРАЛОВ В РУДАХ	12
4. СТАДИИ МИНЕРАЛИЗАЦИИ	15
5. МАКРОСКОПИЧЕСКАЯ ХАРАКТЕРИСТИКА ОБРАЗЦОВ РУД	15
6. ВОЗРАСТНЫЕ ВЗАИМООТНОШЕНИЯ МИНЕРАЛОВ В РУДАХ	19
ЛИТЕРАТУРА	20

1. ВЕЩЕСТВЕННЫЙ СОСТАВ РУД

Под этим названием подразумевают химический и минеральный состав руд. Руды могут быть по составу простыми (одно-, двухкомпонентными) и сложными, поликомпонентными; последние часто называют полиметаллическими. В простых по составу рудах ценные компоненты, как правило, являются ведущими. В поликомпонентных выделяют: главные, второстепенные и редкие. Содержания компонентов определяют в ходе опробования при разведочных работах на месторождениях полезные ископаемые. Содержания компонентов называют кондиционными, если они отвечают экономическим требованиям при данной конъюнктуре рынка. В таблице 1 приведены примерные кондиции (по запасам и содержанию компонентов) для отдельных групп металлов.

Таблица 1 Кондиции месторождений

Металлы	Типичные	Минималь-	Мини-	Запасы крупных	
	представи-	ные запасы,	мальное	месторождений,	
	тели	тонн	содержа-	ТОНН	
			ние, %		
И арии 10	Fe, Mn	Сотни	20-25	Миллиарды	
Черные	T'e, Will	тысяч	20-23	типллиарды	
Цветные	Cu, Zi, Pb,	Тысячи,	0,4-1	Десятки млн.	
цветные	Ni	дес. тысяч	0,4-1	десятки млн.	
Редкие	W, Sn, Hg	Десятки,	0,1-0,2	Сотни тыс.	
Тедкие	w, 511, 11g	сотни тысяч	0,1-0,2	Сотни тыс.	
Радиоактивные	U, Th	Десятки,	0,05-0,1	Сотни тыс.	
т адиоактивные	0, 111	сотни тысяч	0,03-0,1	Сотни тыс.	
Благородные	Au, Ag, Pt	КГ	$5 \cdot 10^{-4}$	Десятки тыс.	

Из таблицы видно, что чем выше ценность минерального сырья, тем ниже кондиции как по запасам, так и по содержанию ценных компонентов.

Минеральный состав определяется в процессе изучения полезного ископаемого и включает полевое (макроскопическое) и лабораторное исследование. Выделяют минералы рудные, т.е. содержащие металлы и нерудные, не содержащие металлы. Примерами рудных минералов могут служить: магнетит, гематит, халькопирит, пентландит, касситерит, самородное золото и т.п. Типичными нерудными минералами являются: кварц, кальцит, доломит, барит, полевые шпаты и т.п. Количественные соотношения между рудными и нерудными минералами могут варьировать в широких пределах.

2. ТЕКСТУРЫ И СТРУКТУРЫ РУД

Текстуры и структуры руд являются важнейшими генетическими признаками, по которым оценивают особенности геолого-структурных и физико-химических условий их образования, выбирают наиболее рациональную схему их переработки (обогащения).

2.1. Текстуры

В основе понятия текстура лежит минеральный агрегат, представляющий некую совокупность зерен (массив), колломорфную массу. При характеристике текстуры учитывают: размеры минеральных агрегатов, их формы и способы сочетания (срастания) с другими минеральными агрегатами. Минеральные агрегаты могут быть крупными, измеряемыми дециметрами, метрами, и мелкими измеряемыми долями миллиметра. В первом случае имеют дело с макро- (мега-) текстурами, во втором – с микротекстурами. Наиболее часто встречаются следующие морфологические группы текстур: массивная, пятнистая, полосчатая, прожилковая, сфероидальная, почковидная, брекчиевая (дробления), пустотная, каркасная, рыхлая (землистая). Они схематически изображены на рис.1. Ниже дается их краткое описание.

Массивная текстура характеризуется равномерным, сплошным сложением агрегатов минералов. Она проявляется в рудах как моно-, так и полиминерального состава. Пользуется широким распространением.

Пятнистая текстура выделяется неправильными, прерывистыми скоплениями рудных минералов среди массы нерудных минералов. Разновидности ее: такситовая и вкрапленная (рис. 1a).

Полосчатая текстура характеризуется чередованием полос различного минерального состава (рис. 1б). В рудах осадочных месторождений ее аналогом является слоистая, в метаморфогенных — сланцеватая и гнейсовидная текстуры, в магматогенных — крустификационная (рис. 1в, 2, 3). Слоистая текстура отличается почти параллельным расположением слоев (прослоев) разного состава, структуры, окраски и т.д. Рудные слои чередуются со слоями горной породы. Границы между ними могут быть резкими или постепенными. Сланцеватая текстура возникает под влиянием ориентированного давления.

Прожилковая текстура выделяется благодаря системы сетчатых, пересекающихся или субпараллельных прожилков (рис. 1г)

Сфероидальная текстура характеризуется концентрическими выделениями минеральных агрегатов. Разновидности ее: нодулярная, кольцевая, кокардовая, друзовая (в гидротермальных месторождениях), конкре-

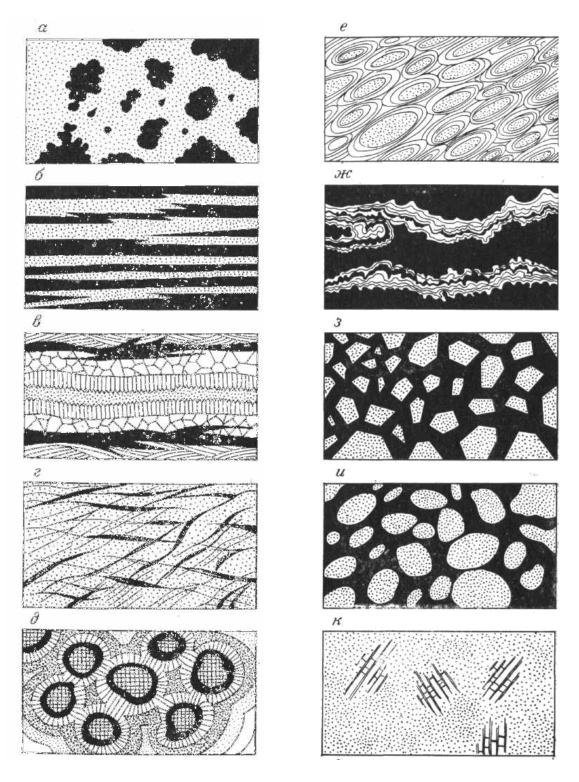


Рис. 1. Некоторые типы текстур руд (схемы).

а — пятнистая; б— полосчатая; s — крустификационная; z — прожилковая; d — кокардовая; e-оолитовая; x — почковидная; s — бреичиевая; s — брекчиевидная.; s — фрагменты каркасно-ящичной текстуры

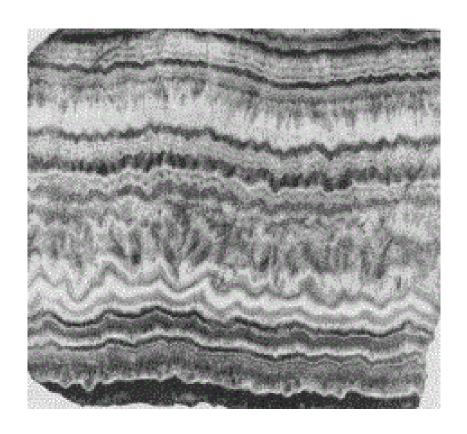


Рис. 2. Крустификационная текстура кварца и аметиста. Полированный штуф

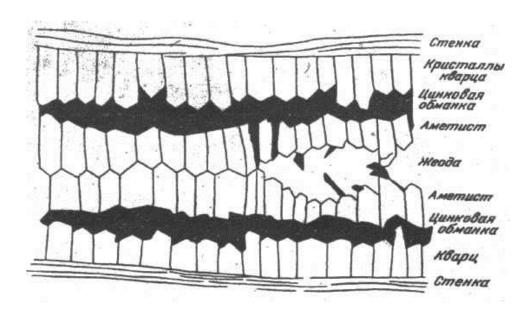


Рис. 3. Крустификационная (симметричная) текстура и гребенчатая структура. В центре жилы — жеодовая полость

Рис. 4. Колломорфная и почковидная текстура коллоидных агрегатов малахита. Структура агрегата концентрически-зональная. Месторождение Высокогорское, Урал. Полированный штуф

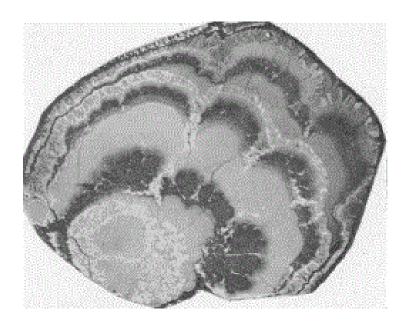


Рис. 5. Колломорфная тектура агрегата псиломелана (светло-серое), с трещинками усыхания) и халцедона (черное). Структура агрегата псиломелана и халцедона гелевая. Для пиролюзита (белое) характерны волокнистая метаколло-идная структура и колломорфная метаколлоидная текстура. Полированный штуф.

ционная и секреционная, оолитовая, бобовая и конгломератовая (в осадочных месторождениях).

Почковидная (коломорфная) текстура (рис. 1ж, 4, 5) характеризуется сгустковидными, пузырчатыми выделениями минеральных агрегатов. Возникает из коллоидных растворов. Распространена в рудах гидротермальных и экзогенных месторождений.

Дробления текстура состоит из массы обломков, сцементированных минеральными агрегатами более позднего образования. Типична для многостадийных месторождений (рис. 13)

Пустомная текстура отличается кавернозным строением руды. Характерна для продуктов коры выветривания. Разновидности — пористая друзовая и жеодовая текстуры; последние связаны с наличием в породе или руде полостей, на стенках которых отлагаются минеральные агрегаты (корки, щетки кристаллов).

Каркасная текстура своим видом напоминает незаполненные медом соты. В качестве перегородок обычно выступают устойчивые минералы, например, кварц.

Рыхлая (землистая) текстура представляет слабо сцементированную массу обычно неявно кристаллического строения. Типична для руд осадочных месторождений и коры выветривания.

Органогенная текстура характеризуется массовым скоплением органических осадков (раковин, костей), сцементированных мелко-, тонкозернистым материалом органических остатков плюс новообразования.

2.2. Структуры

В основе понятия структура лежит минеральный индивид – зерно минерала или его часть, формирующие агрегат. Вид структуры зависит от формы зерен, их размера и способов сочетания (срастания). Как и текстура, структура может быть макро- и микроскопической. Наиболее важные из них следующие: равномернозернистая, неравномернозернистая, пластинчатая, волокнистая, зональная, кристаллографически- ориентированная, тесного срастания, окаймления, замещения, дробления, колломорфная, сфероидальная, распада твердых растворов. Каждая из них имеет свои разновидности.

Равномернозернистая структура (рис 6а) представлена агрегатом из равновеликих зерен моно- или полиминерального состава. Разновидности: гипидиоморфно- (рис. 7) и аллотриоморфнозернистая, сидеронитовая и другие, а также перекристаллизованные структуры, например, гранобластовая. Чаще встречаются в рудах магматических и метаморфических типов.

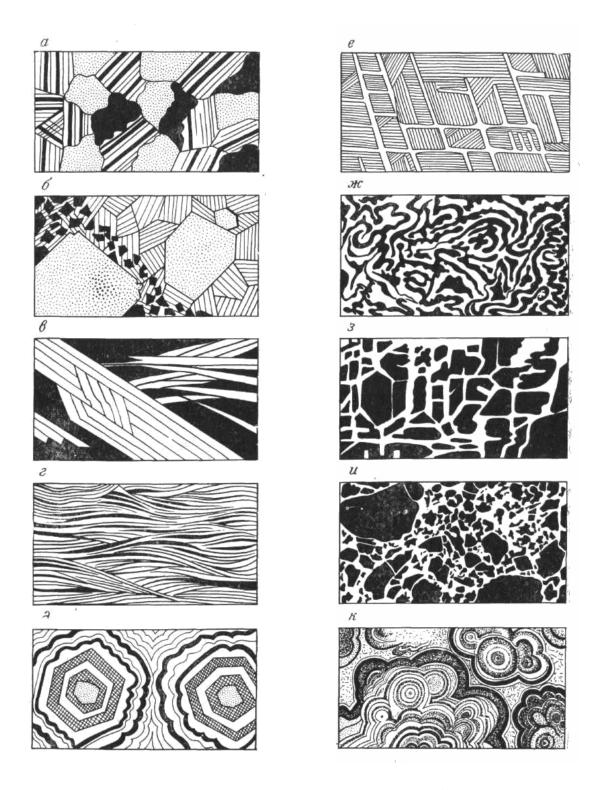


Рис. 6. Некоторые типы структур руд (схемы). a — равномернозернистая; δ — неравномернозернистая; ϵ — пластинчатая; ϵ — волокнистая; δ — зональная; ϵ — кристаллографически-ориентированная; κ — тесного срастания; δ — замещения; δ — дробления; δ — колломорфная

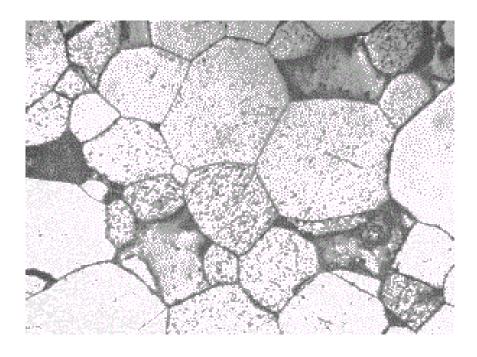


Рис. 7. Гипидиоморфнозернистая структура. Промежутки между идиоморфными зернами пирита (белое с шагренью) заполнены халькопиритом (светло-серое) и кварцем (черное). Полированный шлиф.

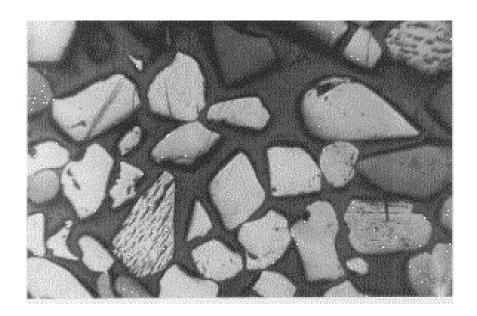


Рис. 8. Обломочная структура агрегата рутила, ильменита (белое), циркона (серое, рельефное) и кварца (черное). Обломки минералов сцементированы диккитом (черное). Полированный шлиф.

Неравномернозернистая структура (рис. 6б) представляет агрегат, состоящий из зерен разных размеров. Разновидности: порфировая (порфиробластовая), пойкилитовая и другие. Типична для руд магматогенного и метаморфогенного типов.

Пластинчатая структура (рис. 6в) выделяется пластинчатой формой всех или преобладающей части зерен моно- или полиминеральной рудной массы.

Волокнистая структура отличается тонконитевидным, волокнистым строением агрегата (рис. 6г).

Зональная структура (рис. 6д) возникает при зональном заполнении пустот, характеризуется чередованием (в зонах) выделений минералов разного состава. При повторном выделении одного и того же минерала определяют последовательные генерации.

Кристаллографически- ориентированная структура (рис. 6e) характеризует рост минеральных выделений, контролируемых какими-либо кристаллографическими элементами (например, трещинами спайности, двойниковыми швами и т.д.).

Структура тесного срастания (рис. 6ж) характеризуется тесным взаимным проникновением одних минералов в другие с образованием сильно извилистых и клиновидных границ между ними.

Замещения структура (рис. 6и) возникает при метасоматическом замещении ранних минералов более поздними.

Дробления (катаклаза) структура (рис. 6к) отражает выделение более поздних минералов по механическим нарушениям ранее образованных минералов.

Колломорфная структура (рис. 6к) представляет результат выделения минералов из коллоидных растворов, обычно зонально-фестончатого характера.

Сферолитовая структура типична для руды, состоящей из сферолитовых (глобулярных) выделений, имеющих радиально-лучистое и зональное внутреннее строение.

Обломочная структура (рис. 8) характеризуется агрегатом, состоящим из обломков минералов или горных пород, сцементированных агрегатом более поздних минералов. Типична для осадочных месторождений.

Частоты встречаемости наиболее типичных текстур и структур для сини эпигенетических месторождений приведены в таблицах 2 и 3

3. ПАРАГЕНЕЗИСЫ МИНЕРАЛОВ В РУДАХ

С текстурами и структурами тесно связано другое важное понятие – парагенезис минералов. Под ним подразумевается закономерная, генетически обусловленная ассоциация минералов, представляющая самостоятельный минеральный агрегат. По числу находящихся в ассоциации минералов

Таблица 2 Главнейшие текстуры и структуры руд сингенетических месторождений полезных ископаемых

Морфологиче-	Месторождения		Морфологи-	Месторождения	
ские виды тек-	Магмато-	Oca-	ческие виды	Магмато-	Осадоч-
стур	генные	дочные	текстур	генные	ные
Текстуры	первичны	e	Структ	уры первич	ные
Вкрапленная,	+++	+++	Зернистые	+++	+++
пятнистая					
Массивная	+++	+++	Метазернис-	+	+
			тые		
Нодулярная	+++	_	Коррозионная	+++	+
Слоистая	+	+++	Коллоидная	_	+++
Полосчатая	+	+++	Обломочная	_	+++
Оолитовая	_	+++	Структуры вторичные		
Конкреционная	_	+++	Распада твер-		
Органогенная	_	+++	дых растворов	+++	_
Цементная	_		Кристаллоб-		
Землистая	_	++	ластическая	+++	+++
Колломорфная	_	+++	Катакласти-		
(почковидная)			ческая	+++	+++
Брекчиевая	+	+++	Метаколло-	+	+
			идная		
Прожилковая	+				
Текстуры вторичные					
Трещиноватые	+	+			

Примечание. Текстуры и структуры наблюдаются: + + + часто; + редко; – не наблюдаются

Главнейшие текстуры и структуры руд эпигенетических месторождений полезных ископаемых

Морфологиче-	Месторождения		Месторождения метасомати-			
ские виды	заполнения пустот		ческого замещения			
	после-	мета-	инфиль-	после-	мета-	инфиль-
	магма-	морфи-	траци-	магма-	морфи-	трацион-
	тиче-	ческие	онные	тиче-	ческие	ные
	ские			ские		
		Текстурі	ы первичн	ые		
Крустификаци-	+++	+++	+++	_	_	_
онная						
Кокардовая	+++	+++	+++	_	_	_
Прожилковая	+++	+++	+++	_	_	_
Колломорфная	+	+	+++	+	+	+
(почковидная)						
Конкреционная	+	+	+++			
Друзовая	+++	+	+++	+	+	+
Слоистая	_	ı	_	+++	+++	
Органогенная	_	1	_	++	++	++
Полосчатая	+++	+++	+++	++	++	++
Брекчиевая	+++	+++	+++	++	++	++
Вкрапленная	+++	+++	+++	+++	+++	+++
(пятнистая)						
Массивная	+++	+	+	++	++	++
		Структур	ы первичн	ые		
Зернистые	+++	+++	+++	_	1	_
Метазернистые	_	_	_	+++	+++	+
Коррозионные	+++	+++		+++	+++	
Коллоидные	+	+	+++	+	+	+++
Структуры вторичные						
Распада твердых	+++	+?	+	+	+?	+
растворов						
Кристаллобла-	+++	+++	+++	+++	+++	+++
стические						
Катакласти- че-	+++	+++	+++	+++	+++	+++
ские						

Примечание. Текстуры и структуры наблюдаются: + + + часто; + редко; – не наблюдаются; ? предполагаются; + + унаследованные

парагенезисы могут быть простыми (состоящими из двух-трех минералов) и сложными (полиминеральными). Они могут представлять также одну или несколько генераций минералов. Последовательно сменяющиеся генерации отражают временную (иногда пространственную) эволюцию процесса рудообразования. Так, например, в брекчиевой тестуре руды присутствуют две или более парагенетические ассоциации: одна в состоянии обломков (ранняя ассоциация), а другая - в связующей массе («цементе»). То же имеет место в прожилковой, зональной, кокардовой и других текстурах. Наиболее характерные минеральные и элементные парагенезисы (в соответствующих генетических типах месторождений) представлены в таблице 4.

4. СТАДИИ МИНЕРАЛИЗАЦИИ

По времени образования (по отношению к вмещающим породам) месторождения полезных ископаемых подразделяются на сингенетичные и эпигенетичные. Первые образовались одновременно (или близко одновременно) с вмещающими породами, а вторые - позже, представляют наложенный процесс. Процесс рудо (минерало-) образования часто представляется стадийным. Стадийность обычно фиксируется по признакам прерывистости (например, брекчированы). Последовательность стадий («наложение) часто обнаруживаются в пределах отдельно взятых рудных тел. Каждая выделенная стадия представляет обычно одну парагенетическую ассоциацию минералов. Поэтому стадийность рудообразования представляет последовательную смену парагенезисов. Наиболее часто наблюдается смена более высокотемпературных ассоциаций низкотемпературными, и первые ассоциации нередко представляют оксидные минералы, сопровождаемые кварцем (иногда слюдой, полевым шпатом), а последние – сульфидами в сопровождении карбонатов (кальцита, доломита), сульфатов (барита, алунита) и др. В большинстве случаев рудные месторождения образовались в несколько стадий, число которых может достигать десяти. Критериями для выделения стадий рудообразования обычно служат: 1) пересечение ранних минеральных выделений жилами и прожилками минерального вещества последующих стадий; 2) брекчирование минеральных агрегатов ранней стадии с цементацией их обломков минеральной массой новой стадии.

5. МАКРОСКОПИЧЕСКАЯ ХАРАКТЕРИСТИКА ОБРАЗЦОВ РУД

Изучение образцов руд, как и горных пород, – многоступенчатый процесс. Он начинается, как правило, на месторождениях полезных ископаемых. Отобранные образцы (привязанные к конкретным точкам - рудным телам, горным выработкам) характеризуются макроскопически с ука-

Таблица 4

Парагенетические ассоциации элементов и минералов в рудах

_		циации элементов и минералс	1,5		
Руды	Ассоциации	Парагенезисы минералов	Примеры ме-		
	элементов		сторождений		
1	2	3	4		
	А. ЭНД	ОГЕННАЯ СЕРИЯ			
І. Маги	матические место	рождения в гипербазитах и ба	зитах		
Хромитовые	Cr, Fe, Mg	хромит, оливин, пироксен	Сарановское (Урал)		
Медно-	Ni, Cu, Pt, Pd,	пирротин, пентландит, халь-	Норильское		
никелевые	Co	копирит, магнетит, минералы	(Краснояр-		
(сульфидные)		платины и кобальта	ский край)		
	II. Пегматиты	кислых и щелочных пород			
оловянно-	Sn, W, Li	касситерит, вольфрамит, по-			
вольфрамово-		левой шпат, кварц, слюда			
литиевые		1 2			
монацитовые	TR- цериевой	монацит, полевой шпат, му-			
	гр., Th	сковит			
керамические	K, Si, Na, Ca,	КПШ, NаПШ, кварц, слюда			
_	Mg				
III. Постмагма	тические (скарно	вые) месторождения, связанн	ые с гранито-		
	` 1	идами	•		
железа	Fe (Ca, Al, Si)	гематит, магнетит, гранаты, пироксены	Магнитогор- ское (Урал)		
меди	Cu, Fe (S, Al,	пирит, пирротин, халькопи-	Турьинское		
	Si)	рит, сфалерит, магнетит, ге-	(Сев. Урал)		
		матит, гранаты, пироксены	1 /		
вольфрама,	W, Mo(Ca, Al,		Тырныауз		
молибдена	Si)	пироклаз	(Сев. Кавказ)		
	IV. Постмагматические (г/т) месторождения, связанные главным образом с				
кислыми интрузивами					
кварц-	Sn (W, Mo)	касситерит, вольфрамит, мо-	Депутатское		
касситерито-		либденит топаз, флюорит,	(Якутская)		
вые		кварц			
медные и мед-	Cu, Mo	халькопирит, молибденит,	Коунрад (Ка-		
номолибдено-	,	пирит, кварц, серицит, анда-	захстан)		
вые		лузит, флюорит	<u> </u>		
L	I.				

Продолжение табл. 4

	продолжение таох			
1	2	3	4	
свинцово-	Pb, Zn, Ag (Au,	галенит, сфалерит, пирит,	Рудно-	
цинковые	Cu)	блеклые руды, халькопирит,	Алтайские	
		аргентит, кварц, кальцит, ба-		
		рит, серицит		
золото-	Au, Cu, Fe, Pb	пирит, галенит, блеклые ру-	Березовское	
сульфидные	(As, Bi, Zn)	ды, S1, арсенопирит, айкинит,	(Урал)	
		Ап, кварц, карбонаты		
колчеданные	Cu, Fe, S (Zn, Pb,		Гайское	
	Au, Ba)	Q, серицит, кальцит, барит	(Ю.Урал)	
	V. Полиген	ные месторождения		
	a. Cn	пратиформные		
меди	Cu (Fe, Zn, Pb,	халькозин, ковелин, борнит,	Джезказган	
Pb, Zn	Au, Ag, Pt, Re)	(CuFeS ₂ , ZnS, PbS, бл. руда)	(Казахстан)	
		кальцит, кварц, барит.		
	Б.ЭКЗС	ГЕННАЯ СЕРИЯ		
	І. Месторожде	ния коры выветривания		
	1. Остаточ	ные месторождения		
	а) силин	катные никелевые		
Руды	Ni (Co, Mn, Fe,	гарниерит, ревдинскит, не-	Халилово,	
	Cr, V)	пуит, нонтронит, магнезит,	Уфалей	
		опал, асболан	(Урал)	
	б) прир	одно-легированные железные ру	/ды	
	Fe, Mn, Ni, Co,	Гетит, гидрогетит, гематит,	Елизаветин-	
	Cr,	халцедон, сидерит	ское (Урал)	
	2. Ин	фильтрационные месторождени	Я	
		а) Месторождения урана		
	U, V (As, Pb, Zn,	карнотит, тюямунит, урано-	Плато Ко-	
	Cu)	фан, патронит	лорадо	
	,		(США)	
	II. Осадочные месторождения			
	1. Хемогенные			
		а) месторождения солей		
	Na, K, Mg, B, Cl	галит, сильвин, карналит,	Соликамск	
	(Br, Li, Cs, Rb	бишофит		

Продолжение табл. 4

		1		
1	2	3	4	
	б) железорудные			
	Fe (Mn, Al, Si)	гетит, гидрогетит, сидерит,	Керченское	
		шамозит	(Крым)	
		в) бокситы		
	Al, Si (Fe, Ga)	бемит, гиббсит, нефелин, ка-	Тихвинское	
		олинит		
		2. Биохемогенные		
	а) фосфориты	франколит, курскит, подолит	Вятско-	
		и др., глауконит, орган. ве-	Камский	
		щество	бассейн. Ка-	
			ратау	
	В. МЕТАМОРФОГЕННАЯ СЕРИЯ			
	1. Метаморфические			
	а) Кианитовые (дистеновые, силлиманитовые)			
	Al, Si	кианит, дистен, силлиманит,	Борисовское	
		корунд	(Урал)	
		б) Хризотил-асбеста		
	Mg, Al, Si	серпентин (разновидности-	Баженов-	
		хризотил, антигорит, бастит)	ское (Урал)	
	2.Метаморфизованные			
	а) Месторождения железистых кварцитов			
	Fe, Si (Na, Al, U,	магнетит, гематит, щелочные	Кривой рог	
	Au)	амфиболы		

Примечание. В скобках приведены второстепенные ассоциации элементов

занием характерных минералов и текстурно-структурных признаков, сопровождаются зарисовками (фотографиями). Отобранные образцы могут представлять штуфы наиболее распространенных типов руд, которые дают общее представление о характере минерализации. Образцы, отобранные по профилям (разрезам) могут указывать на пространственное распределении типов руд, на проявление признаков зональности, и глубину распространения оруденения, масштабность (продуктивность) отдельных стадий минерализации и т.д. Задокументированные образцы (или их дубликаты) затем изучаются в лабораторных условиях, где уточняются минеральный состав и парагенетические ассоциации, структурно-текстурные особенности, возрастные взаимоотношения минералов, наличие характерных примесей и т.д. Эту информацию о вещественном составе руд получают с помощью микроскопии (минераграфия), рентгенографии, спектрального (эмиссионного) анализа и др. методов.

Итогом проделанной работы должны служить: схемы, графики, таблицы, характеризующие качественный и количественный состав минералов в рудах, уточненные парагенетические ассоциации, последовательность минералообразования в рудах с указанием продуктивных ассоциаций.

6. ВОЗРАСТНЫЕ ВЗАИМООТНОШЕНИЯ МИНЕРАЛОВ В РУДАХ

При исследовании генезиса рудных месторождений важное значение придают установлению возрастных взаимоотношений минералов и их агрегатов. Признаки по которым устанавливается порядок выделения, разнообразны. Наиболее характерные из них следующие:

- 1. Форма зерен. Хорошо образованные зерна (или кристаллы) часто (но не всегда) выделяются первыми
- 2. Коррозия (разъедание) и замещение одного минерала другим является надежным возрастным признаком. Замещающий минерал моложе замещаемого.
- 3. Пересечение (например в виде прожилков) одного минерала (или агрегата минералов) другим указывает на его более позднее выделение.
- 4. Дробление (брекчирование) и последующая цементация или заполнение пустого пространства минеральным веществом надежный критерий возрастных взаимоотношений. Минерал или агрегат минералов, испытавший дробление, являются всегда более ранним по отношению к цементирующему агрегату. Этот критерий является, кроме основания, для выделения стадий минерализации в месторождении.
- 5. Крустификационные и жеодовые текстуры указывают на последовательное отложение минералов в направлении от стенок пустоты к центру. Заметим, что в конкреционных текстурах отложение происходит обратным путем: от центра к периферии.

В общем случае различают три порядка отложения минералов и их агрегатов в рудах (таблица 5).

Крустификационная, кокардовая или жеодовая (пустотная) текстура указывает на отложение руды в открытых полостях, в близи поверхности, при незначительном внешнем давлении.

Колломорфные текстуры – признак отложения минералов и коллоидных растворов.

Натечные, пористые, ковернозные текстуры указывают на гипергенное образование минералов (например при выветривании)

Слоистые текстуры в сочетании с оолитовыми свидетельствуют об осадочном процессе рудообразования.

Сланцеватые и плойчатые, сопровождающиеся дробление и брекчевание руд, являются признаками процессов метаморфизма.

Таблица 5 Текстурные признаки порядка отложения минералов (по М.П.Исаенко)

Последователь-	Графическое изоб-	Характерные	Ассоциации мине-	
ность отложения	ражение последо-	текстуры руд	ралов в месторож-	
	вательности		дении	
Одновременное		Массивная ме-	Магматических,	
		таколлоидная,	осадочных и реже	
		коллоидная	постмагматических	
Последовательное		Слоистая, ооли-	Магматических,	
		товая, крусти-	осадочных и гидро-	
		фикационная,	термальных	
		полосчатая, же-		
		одовая		
Разновременное со		Прожилковая,	Постмагматиче-	
следами перерыва		брекчиевая, ко-	ских, выветрива-	
		кардовая, поло-	ния.	
		счатая, скелет-		
		ная, унаследо-		
		ванная		

Пояснения: 1. Одновременное — отложение одного или более минералов в одно время (синхронно); 2. Последовательное — отложение следующего минерала начинается до окончания выделения предыдущего минерала; 3. Разновременное — Следующий минерал отлагается после завершения выделения минерала предшествующего. В этом случае возможен даже перерыв в минералообразовании.

ЛИТЕРАТУРА

- 1. Авдонин В.В., Старостин В.И. Геология полезных ископаемых. Учебник. Автор(ы): Издание: Академия, Москва, 2010 г., 384 стр.
- 2. Исаенко М.П. Определитель текстур и структур руд. Изд. «Недра», 1983 г. 261 с.
- 3. Смирнов В.И. Геология полезных ископаемых. М.: «Недра», 1989 г. 326 с.
- 4. Старостин В.И., Игнатов П.А. Геология полезных ископаемых : учеб. для студентов вузов, обучающихся по специальностям 511000 "Геология" и геол. специальностям. М. : Акад. Проект: Фонд "Мир", 2006. 511 с.

- 5. Типоморфизм минералов и его практическое значение. Изд. «Недра», 1972 г. 260 с.
- 6. Юшко С.А. Методы лабораторного исследования руд. Изд. 4-е М.: Недра, 1971 г. 344 с.