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Abstract

For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top

three causes of opportunistic human infections. Therapy of P. aeruginosa infections is com-

plicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased

uptake of drugs due to cell wall/membrane permeability appear to be important issues in the

acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have

been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role

of these targets in virulence has not been identified in P. aeruginosa. Here, we report knock-

out (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF,

PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and charac-

terized these in order to find out whether these genes and their products contribute to patho-

genicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis

targets significantly reduced growth rate in minimal medium compared to the parent strain.

The k.o mutants showed exciting changes in cell morphology and colonial architectures.

Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also atten-

uated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more

sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion

of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored

in a plant model by unknown mechanism. This study demonstrates that cell wall targets con-

tribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aerugi-

nosa. In conclusion, these findings establish a link between cell wall targets and virulence of

P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeru-

ginosa infection.

PLOS ONE | https://doi.org/10.1371/journal.pone.0186801 October 18, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Elamin AA, Steinicke S, Oehlmann W,

Braun Y, Wanas H, Shuralev EA, et al. (2017) Novel

drug targets in cell wall biosynthesis exploited by

gene disruption in Pseudomonas aeruginosa. PLoS

ONE 12(10): e0186801. https://doi.org/10.1371/

journal.pone.0186801
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Introduction

Pseudomonas aeruginosa is a wide-spread Gram-negative bacterium. It is reported as the third

leading cause of nosocomial infections responsible for life-threatening infections of immuno-

compromised and cystic fibrosis patients and is main cause of hospital-acquired infections,

particularly for burns victims [1, 2].

Biofilm forming bacteria like P. aeruginosa are armed with success-arsenals such as envi-

ronmental adaption to distinct environments with low nutriments showing a characteristic

regulation in gene expression profile [3]. Biofilm formation also leads to a higher antibiotic tol-

erance and gives the necessary time to acquire antibiotic resistance [3, 4]. Antibiotic resistance

mechanisms have been studied extensively in P. aeruginosa. Common mechanisms/factors are

active efflux and/or decreased uptake of drugs (membrane permeability), modification of the

drug, oxidative phosphorylation, lipopolysaccharide (LPS) composition, cyclic di-guanosine

monophosphate (c-di-GMP) levels and quorum sensing [3–8].

Most of P. aeruginosa strains develop high intrinsic resistance as a result of inefficient anti-

biotics uptake across the outer membrane [9]. A prominent constituent of the outer mem-

brane is cell wall polymer, peptidoglycan, which is vital for bacterial survival. As in many other

gram negative bacteria, the biosynthetic pathway of peptidoglycan consists of two-stage pro-

cess. The first process takes place in the cytoplasm catalysed by murA. This is followed by

reduction reactions of the enol-pyruvate moiety to D-lactate, yielding UDP-N-acetylmuramate

catalysed by murB. The later product enters series of pentapeptide side chain additions on the

newly reduced D-lactyl group which is processed by murC, murD, murE and murF (Fig 1)

[10, 11].

The second process deals with the transfer of the precursor across the inner membrane and

addition to the growing cell wall polymers [11]. Every antibiotic that is introduced into clinical

use has limited or no effect on mur enzymes, except murA, which is inhibited by phosphono-

mycin [12]. Another promising target in P. aeruginosa cell-wall is the LPS biosynthesis path-

way. The sugar 3-deoxy-D-manno-octulosonic acid (Kdo) is an essential component of the

lipopolysaccharide (LPS) of Escherichia coli and other Gram-negative bacteria [13–15]. The

Kdo sugar synthesis mediated by waaA (3-deoxy-D-manno-octulosonic-acid (Kdo) transfer-

ase) which makes sequential addition of two Kdo sugars onto a molecule of lipid IVA, a key

precursor of lipid A (Fig 1). Belunis et al. [16] demonstrated that the 3-deoxy-D-manno-octu-

losonic-acid (Kdo) transferase gene is essential for growth of E. coli. Another LPS decoration is

the O-specific polysaccharide, made of replicated oligosaccharide units. Most of the enzymes

involved in the biosynthesis of O polysaccharides are encoded by genes clustered in the rfb
locus (rml locus in P. aeruginosa) [17]. Mutations among rfb gene cluster in E. coli K-12 lead to

loss of O antigen and inability to survive in its natural environment [18]. Moreover, previous

studies have noted that the organism’s components residing in the periplasm are essential for

P. aeruginosa pathogenesis and virulence [19]. Peptidyl-prolyl cis-trans isomerase B (ppiB),

one of the most important enzymes in periplasmic area, which catalyses the cis-trans isomeri-

zation of proline peptide bonds, have been detected and isolated from both the periplasm of

the E. coli and P. aeruginosa [19–21].

The lack of novel antibiotics against P. aeruginosa and related drug resistant Gram-negative

bacteria is mainly responsible for the failure to control drug resistance [22, 23]. P. aeruginosa
strain PAO1 has one of the largest bacterial genomes sequenced with over 5.500 predicted

genes [24]. A multidisciplinary approach has been used to assess and validate drug targets,

genetically and biochemically, characterise these targets and generate new hit [25, 26]. Based

on bioinformatics and biological data assessment of PAO1 and other Gram-negative organ-

isms, a target list of genes encoding proteins for which there are no structures and little

Drug targets analysis by gene disruption in Pseudomonas aeruginosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0186801 October 18, 2017 2 / 18

manuscript. AAE, SS, WO and MS are employed by

LIONEX Diagnostics and Therapeutics GmbH. YB

was employed during Aeropath project by LIONEX

Diagnostics and Therapeutics GmbH. HW was

supported by a doctoral scholarship from

Deutscher Akademischer Austauschdienst (DAAD).

CH and MM are employed by mfd Diagnostics

GmbH. The specific roles of these authors are

articulated in the ‘author contributions’ section.

Competing interests: Ayssar A. Elamin, Susanne

Steinicke, Wulf Oehlmann and Mahavir Singh are

employed by LIONEX Diagnostics and

Therapeutics GmbH. Yvonne Braun was employed

during Aeropath project by LIONEX Diagnostics

and Therapeutics GmbH. Hanaa Wanas was

supported by a doctoral scholarship from

Deutscher Akademischer Austauschdienst (DAAD).

Carmen Huck and Marko Maringer are employed

by mfd Diagnostics GmbH. There are no patents,

products in development or marketed products to

declare. This does not alter our adherence to PLOS

ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0186801


biochemical data have been identified and predicted to have an essential function in this path-

ogen [25, 27].

The pathogenesis of P. aeruginosa infections is multifaceted, as illustrated by numerous vir-

ulence features. Previous studies have shown that the majority of bacterial outer leaflet murein,

and LPS biosynthesis enzymes are crucial for the survival of most Gram-negative bacteria

[11, 13–16, 18, 28]. However, no direct relationship between these genes and virulence of

Fig 1. Schematic representation of peptidoglycan and LPS biosynthesis pathway in P. aeruginosa. The targeted genes are colored in

red.

https://doi.org/10.1371/journal.pone.0186801.g001

Drug targets analysis by gene disruption in Pseudomonas aeruginosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0186801 October 18, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0186801.g001
https://doi.org/10.1371/journal.pone.0186801


P. aeruginosa has been established. In order to fill the innovation gap and to search new targets

for novel antibiotics development against P. aeruginosa infections, we used “evaluate and

design” strategy. In this study, a sub-set of the PAO1 cell wall, murein and LPS biosynthesis

targets were subjected to in-vivo gene deletion by constructing single-gene knockout strains of

PAO1 followed by survival experiments of these mutants in vitro and in vivo. We report here

the results obtained with a number of k.o mutants in murA, PA4450; murD, PA4414; murF,

PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988. By using this genetic approach, we

could assess directly the role of selected targets in pathogenesis and virulence in mice.

Material and methods

Ethics statement

All animal experiments were carried out according to recommendations of the European

Commission and the law for the Care and Use of Laboratory Animals of the Government of

the Federal Republic of Germany. The protocol and experiments were approved by the respon-

sible German authorities (the Ethics Committee of Animal Experiments, The Landesuntersu-

chungsamt-the government of Rheinland-Pfalz, Federal Republic of Germany, Permit

Number: 23 177-07/G09-15-001.

Construction of suicide vectors for replacement of target genes

For gene replacement the sacB-based strategy based on the pEX18Ap suicide vector [29, 30]

was used. The suicide vectors for deletion of target genes were constructed by amplification of

approximately 400 bp flanking regions using primers with integrated restriction sites (Table 1)

allowing directed insertion into mobilisable vector pEX18Ap. PCR-products of upstream

regions were cleaved with EcoRI and BglII and downstream regions with HindIII and BglII
(only in case of PA1793 (ppiB) BamHI instead of BglII). The gentamycin-GFP cassette of

pPS858 was excised using BamHI and vector pEX18Ap was digested with EcoRI and HindIII.

Cleaved fragments and vector were then combined in ligation mixture (Fig 2). The constructs

were confirmed by sequencing and then transformed into the E. coli donor strain ST18 which

was used for conjugational transfer of the plasmids into P. aeruginosa PAO1 wild-type (WT)

as described previously [29]. Briefly, E. coli ST18 containing the plasmid were streaked and

transferred to LB plate containing aminolevulinic acid, carbenicillin 100 μg/mL and gentami-

cin 10 μg/mL. After controls and main cultures with and without antibiotics, in 1.5 mL reac-

tion tube 100 μL PAO1 and 1 mL ST18 culture were mixed. The mixture was centrifuged at

11.000 g for 1 min, the pellet was suspended in 100 μL LB medium and plated on LB agar plate

overnight at 37˚C. Using an inoculation needle, the colonies from the conjugation plate trans-

ferred to LB-antibiotic plate and incubated overnight at 37˚C. Single colonies obtained on the

conjugation plate restreaked on LB-antibiotic agar plates. After counter-selection on LB-agar

plates containing 5% sucrose and 80 μg/ml gentamycin, the obtained clones were tested for

carbenicillin sensitivity by replica plating. In order to confirm the loss of plasmid borne DNA

due to recombination events, genomic DNA was isolated from the potential k.o mutants and

used in PCR together with primers specific for internal sequences of backbone of the plasmid.

The correct replacement of the target gene by the gentamycin cassette was confirmed by site

specific PCR and sequencing. Primers located in approximately 800 and 1400 base pairs dis-

tance from the ends of the cassette and directed outwards were used in combination with

primers located minimum 500 base pairs up-and downstream from the target gene. The result-

ing PCR products were isolated and sequenced.

Drug targets analysis by gene disruption in Pseudomonas aeruginosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0186801 October 18, 2017 4 / 18

https://doi.org/10.1371/journal.pone.0186801


Agarose bead preparation with P. aeruginosa PAO1 WT and P.

aeruginosa PAO1 mutants

Agarose beads were prepared as described previously [31] with some modifications. P. aerugi-
nosa PAO1 (ATCC 47085) wild-type (WT) was cultured overnight at 37˚C in LB and cell wall

targets mutants were cultivated in LB supplemented with gentamycin (80 μg/ml). After centri-

fugation at 1500 g for 10 min sedimented bacteria were resuspended in 1 ml sterile PBS (pH

7.4) and added to 5 ml 2% Agarose prewarmed to 50˚C. The bacteria-agarose mixture was

transferred rapidly to 5 ml 50˚C prewarmed heavy white mineral oil. After intensive vortexing

the mixture was cooled on ice for 5 minutes followed by centrifugation at 1500 g for 10 min.

The resulting agarose beads were washed three times in sterile PBS (pH 7.4). The load of bacte-

ria in the agarose beads was quantified by plating 10-fold serial dilutions on Columbia blood

agar plates. The inoculums for infection in mice were prepared by diluting the bead suspension

with PBS (pH 7.4) to 2x108 CFU/ml.

Lung infection of mice and quantification of bacteria in the lung

For the infection studies we used female NMRI outbred mice at the age of min. 6 weeks. The

animals were anesthetized using a Ketamin-Xylazin mixture applied by subcutaneous

Table 1. Sequences of primers used for amplification of flanking regions of target genes, pEX18Ap vector backbone and Gm-gfp cassette.

Target gene Flanking region Primer sequence 5´-3´

PA1793 (ppiB) upstream GGCAATCGCCAGCGAATTC

GCGACGAGATCTGTGGGTAATCCGCTTTGTC

downstream GCGACGGGATCCAGCGATGAGCGTCCTGTTC

GCGACGAAGCTTCCAGCGGCGCAGGCGCATG

PA4414 (murD) upstream GGAGGAGAATTCGTACCTGCTGATTCCCAAC

GGAGGAAGATCTGCTCTCTTCGTCCTCAACG

downstream GGAGGAAGATCTGATGCTGTCGGTGTTGCG

GGAGGGAAGCTTCACGCAGACCTTGGCGATC

PA4416 (murF) upstream GGAGGAGAATTCCTGGAAAAAGTCCTGGAGG

GGAGGAAGATCTGCGGCACCTCCCAGGCGGC

downstream GGAGGAAGATCTCTAATGCTCCTGCTGCTGG

GGAGGGAAGCTTGACTGCCAGAAGTACTTCC

PA4450 (murA) upstream GGAGGAGAATTCGAGATCCTGCCTTTGCAGG

GGAGGAAGATCTTGCAATGATCCCCCGTGGG

downstream GGAGGAAGATCTCGGAGGCTGTCGCGCAAATG

GGAGGGAAGCTTCTTGATCACGTCGACCTGG

PA4988 (waaA) upstream GGAGGAGAATTCGAGATGGTCACGGTGTGCG

GGAGGAAGATCTCATGGGCGCGCAGCTTAGC

downstream GGAGGAAGATCTGTAGCGCTCGCCCCGTCGG

GGAGGGAAGCTTCGTGACCATCCAGTGGTTC

PA5163 (rmlA) upstream GGAGGAGAATTCCGACGAACTCAAGGTCGTG

GGAGGAAGATCTGTGGTCCCTGCTCGCTCAG

downstream GGAGGAAGATCTGAAAGCGACCCGCCTGGC

GGAGGGAAGCTTCCAGAAGTCGGTGGTCTTG

pEX18Ap vector Fw TATGTACTGTGTTAGCGG

Rev AAACTCTGGCTCACCG

Gm-gfp cassette Fw AACTTTGTATAGAGAGCCACTGCG

Rev TTAGGTGGCTCAAGTATGGGC

https://doi.org/10.1371/journal.pone.0186801.t001
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Fig 2. General scheme of construction of suicide vectors (A) and replacement of target genes (B). A: For construction of

suicide vectors for replacement of target genes, regions of approximately 400 bp flanking the target up- and downstream,

respectively, were amplified using primers with integrated restriction sites allowing directed insertion into mobilisable vector

pEX18Ap. PCR-products of upstream regions (1) were cleaved with EcoRI and BglII and downstream regions (2) with HindIII

and BglII (only in case of PA1793 BamHI instead of BglII). The gentamycin-GFP cassette (3) of pPS858 was excised using

BamHI and vector pEX18Ap was linearised with EcoRI and HindIII. Cleaved fragments 1, 2, and 3 and linearised vector
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injection. Mice were intratracheally infected with 50 μl of the bead suspension at a concentra-

tion of 2x108 CFU/ml resulting in 1x107 CFU. After 72 hours of infection, the mice were sacri-

ficed by CO2 inhalation. Lungs were isolated and homogenized through cell strainer. Mouse

lung homogenates were diluted 1:1, 1:10 and 1:100 with sterile PBS (pH 7.4). The resulted dilu-

tions were plated on Columbia blood agar plates in case of P. aeruginosa PAO1 wild-type, and

with addition of gentamycin (80 μg/ml) for Knockout mutants. The colony counts were deter-

mined for each dilution after overnight incubation at 37˚C.

Macrophage-mediated bactericidal assay

Macrophage-mediated bactericidal assays were carried out as described previously with few

modifications [32]. The murine macrophage cell line J774A.1 (Leibniz-Institut DSMZ—

Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) was used to examine

the survival in vitro. Macrophages were grown in DMEM supplemented with 10% fetal bovine

serum (FBS) in a 5% CO2 atmosphere at 37˚C. Mid-log-phase P. aeruginosa PAO1 wild-type

grown in LB broth at 37˚C and for mutants with addition of gentamycin were collected by cen-

trifugation at 6.000 g and suspended to an OD600 of 0.4 in DMEM without FBS. Macrophages

(5 × 107) were incubated in 1 ml DMEM with the wild-type and mutants of P. aeruginosa (5

×107 CFU) for 30 min at 37˚C. In order to eliminate extracellular P. aeruginosa, three washes

by centrifugation at 163 g for 5 min at room temperature in PBS for wild-type and with PBS

containing 400 μg/ml gentamycin were carried out. After the final wash, macrophages were

allowed to adhere to tissue culture flasks in DMEM medium supplemented with gentamicin

(400 μg/ml). After two hours of incubation, macrophages with internalized bacteria were har-

vested and lysed with 0.25% SDS and 0.025% SDS and the live intracellular bacteria were

counted by plating serial dilutions of the lysates on LB plates for wild-type and LB containing

gentamycin (80 μg/ml) for the mutants. The bacterial counts were determined with respect to

the CFU/ml.

Plant virulence assays

The plant virulence assay was performed in lettuce leafs as described previously [33]. 10 μl of

stationary-phase cultures were diluted in LB medium (107 CFU/ml; OD600 = 0.01), washed

twice and resuspended in 10 mM MgSO4. Bacterial suspensions were inoculated into the mid-

ribs of Romaine lettuce leaves. Alu-dishes containing Whatman filter papers soaked with 10

mM MgSO4 and inoculated leaves were kept at room temperature for seven days. Symptoms

were monitored daily for seven days.

Culture conditions and growth curve

P. aeruginosa PAO1 was grown in LB medium or minimal M9 medium, if not otherwise

stated. M9 medium contained 2% glucose as a carbon source in all cases. For growth of all

PAO1 mutants both medium types were supplemented with gentamycin. For growth charac-

teristics comparison, glycerol (2%), instead of glucose as a carbon source, was used.

pEX18Ap (4) were then combined in ligation mixture. The gentamycin-GFP cassette ligation to up and downstream fragments

aided by the compatible cohesive ends between BamHI and BglII. Then E. coli donor strain ST18 was transformed with this

mixture. Afterwards the suicide constructs were transferred from E. coli ST18 into P.aeruginosa PAO1 by conjugation. B: After

conjugational transfer of suicide constructs recombinational replacement of the target genes and loss of vector backbone was

forced by sucrose counter selection and gentamycin selection, respectively. Total DNA was isolated from knock out mutants

and correct gene replacement was confirmed by sequencing extended PCR-products of the flanking regions.

https://doi.org/10.1371/journal.pone.0186801.g002
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Determination of extracellular DNA

For the determination of the release of DNA by P. aeruginosa PAO1 cultures, the bacteria were

grown in LB medium for up to 31 h. The cultures were centrifuged at 15.700 g for 10 min and

the supernatant was mixed with loading buffer. The samples were subjected to 1% agarose gel

stained with GelStar Nucleic Acid Gel Stain (Lonza, USA) and photographed under UV-light.

Quantitative analysis of DNA on gel images was performed by ImageLab software (Bio-Rad

Laboratories).

Preparation for field emission scanning electron microscopy(FESEM)

P. aeruginosa PAO1 wild-type and the mutant strains were grown in LB and M9 medium. The

media for k.o mutant were supplemented with gentamycin (80 μg/ml). 5 ml of midlog-phase

cultures (OD600 of 0.7–0.9) were centrifuged and washed twice in PBS (pH 7.4). Samples were

fixed with a solution containing 2.5% glutaraldehyde for 2 hours at room temperature and

washed twice with PBS. Samples were further washed with TE buffer (20 mM TRIS, 2 mM

EDTA, pH 6.9). After washing with TE buffer samples placed onto poly-l-lysine-coated slides

and then dehydrated with 10%, 30%, 50%, 70%, 90%, 100% acetone, each step for 10 min on

ice. The last 100% acetone step was performed at room temperature. Samples were then criti-

cal-point-dried with liquid CO2 (CPD 030, Bal-Tec, Liechtenstein) mounted onto aluminium

stubs and sputter coated with gold (SCD 500, Bal-Tec, Liechtenstein) before examination in a

Zeiss field emission scanning electron microscope Gemini DSM852 (Zeiss, Oberkochen, Ger-

many) at an acceleration voltage of 5 kV using the Everhart-Thornley SE detector and the

inlens SE detector in a 50:50 ratio. Images were stored onto a 230 MB MO disk. GIMP (version

2.0) software (http://www.gimp.org/) was used for images measurement.

Results

Construction of k.o mutants in P. aeruginosa PAO1

For validation of cell wall biosynthesis genes as potential new drug targets in P. aeruginosa, we

created single gene knockout strains of P. aeruginosa PAO1 using sacB-based strategy on the

pEX18Ap suicide vector (Fig 2). After the putative k.o mutants were identified by their carbe-

nicillin-sensitive, gentamycin-resistant, and sucrose-tolerant phenotype, correct insertion of

Gm-gfp cassette at the target site and excision of pEX18Ap vector backbone was confirmed.

The latter event was examined by PCR using total DNA isolated from k.o-candidates together

with primers specific to pEX18Ap vector backbone and Gm-gfp cassette (S1 Fig). In case

where no fragment could be amplified, clones were further tested for replacement of target

gene by Gm-gfp cassette. For this, primer combinations located minimum 500 bp from the

flanking regions and those located in the cassette directed outwards were used. This means

that the four primers combined in four pairs of which two were expected to result in a frag-

ment in case of correct insertion. Amplified fragments were purified and sequenced for final

confirmation.

Growth characteristics of the k.o mutants: ΔrmlA failed to grow

Prior to studying the effect of the k.o mutations on the mice model, we first examined the

growth characteristics of the wild-type and the mutant strains in both minimal and complex

media. In liquid minimal medium M9 with glucose as the sole carbon source at 37˚C, ΔmurA,

ΔmurD, ΔmurF and ΔppiB mutant strains showed significantly reduced growth rate compared

to that of the wild-type (Fig 3A). In minimal M9 medium with glycerol as carbon source,

ΔmurA, ΔmurD, ΔmurF and ΔppiB mutant strains also showed significantly reduced growth
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rate compared to the parent strain (Fig 3B). Unexpectedly, ΔrmlA mutant strain failed totally

to grow in M9 neither when supplemented with glucose nor with glycerol. The doubling time

of all mutants except ΔwaaA grown in the M9 medium either with glucose or glycerol was sig-

nificantly longer compared to the wild-type strain. Unexpectedly the wild-type culture dis-

played short stationary-phase between 5 and 6 hours in M9 plus glucose and began to grow

exponentially again after 6 hours. In glycerol supplemented media this short delayed growth

appeared also between 6 and 7 hours. In addition, cultures of the mutant strains did not

achieve the same final optical density as the parent strain in the M9 medium. In LB medium

all mutants exhibited similar growth rate to wild-type except delayed growth in initial mid-log

of ΔrmlA cultures (data not shown).

Morphological and colony architectural changes

Using PAO1 k.o mutant cultures grown in minimal and complex media, we investigated col-

ony morphology of PAO1 wild-type, ΔmurA, ΔmurD, ΔmurF, ΔppiB, ΔrmlA and ΔwaaA
grown in vitro. For colony morphology studies, single colonies were inoculated onto fresh

medium plates (LB or M9 supplemented with glucose). All strains used in this study formed

smooth colonies when cultured on LB. We noted that the ΔmurA and ΔmurF colonies in LB

had different color with slightly shining and smoother textured surfaces (Fig 4A). On the other

hand, dramatic changes in colonies morphology were observed when the wild-type and

mutant strains were grown on M9 agar. All mutants colonies were smaller compared to wild-

type except ΔrmlA strain which lost the ability to grow in minimal media (Fig 4A). Such effect

in rmlA mutant (Fig 3) has also been reported for E. coli [18]. ΔmurA strain showed similar

undulated colonies like wild-type but were smaller in size. ΔmurD formed flat smooth colonies

with less undulations while ΔwaaA formed lobed and smooth colonies. Moreover, ΔmurF and

ΔppiB colonies had irregular and highly textured surfaces with marked wrinkles (Fig 4A).

Taken together, the deletion of cell wall biosynthesis genes influenced the morphological

appearance especially in minimal conditions. Scanning electron microscopy showed that

whereas PAO1 wild-type grown in LB exhibited normal rod shape morphology with a cell

length of 1.2–2.5 μm (Fig 4B), ΔmurA, ΔmurD, ΔppiB, ΔrmlA and ΔwaaA mutants grown in

Fig 3. Growth characteristics of P. aeruginosa PAO1 wild-type and cell wall targets mutants. (A) Growth curves in M9 minimal medium

with glucose as the sole carbon source. (B) Growth curves in M9 minimal medium with glycerol as sole carbon source. The standard errors of

the mean for three independent experiments are shown.

https://doi.org/10.1371/journal.pone.0186801.g003
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Fig 4. Morphological and colonial architectures changes in the knockout strains. (A) Colony morphology on LB

(higher panel) and on M9 supplemented with glucose (Lower panel). (B) FESEM analysis of P. aeruginosa wild-type and cell

wall mutants, all strains cultivated on LB (higher panel) and on M9 supplemented with glucose (Lower panel). Scale bar is

indicated at the bottom of each image. The scale bars always represent 2 μm.

https://doi.org/10.1371/journal.pone.0186801.g004
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LB exhibited no alteration in cell morphology. Markedly ΔmurF cells were highly elongated

(Fig 4B) up to 6.8 μm compared to the wild-type and other mutants. This abnormal cell elon-

gation is likely caused by defective cell division because most of elongated cells didn’t show

any cell dividing pattern which may indicate that the formation of septa is suppressed in

ΔmurF mutants [34]. Thus, ΔmurF may have an important role in septal formation and late

cell division events [34, 35]. In M9 medium, length measurements demonstrated clearly that

ΔmurD and ΔmurF cells are shorter when compared to wild-type and other mutants. For

ΔrmlA strain in M9 very few cell found to be documented, because ΔrmlA strain lost growth

ability in M9 medium and most probably these few cells were from the initial inoculum. These

prominent and different changes in cell size, different colony morphologies and surface struc-

ture demonstrated that each Knockout gene affects the cellular phenotype differently.

Extracellular DNA in P. aeruginosa cultures

P. aeruginosa PAO1 as well as clinical P. aeruginosa isolates are known to release extracellular

DNA [4, 36]. Accumulated evidence confirms that the extracellular DNA functions as a cell-

to-cell interconnecting matrix component in biofilms [4, 36–38]. Moreover, extracellular

DNA induces antibiotic resistance in biofilms [4]. The extracellular DNA in the medium of

growing P. aeruginosa PAO1 strains was assessed by stained agarose gel electrophoresis. The

LB medium was used because different growth rates were observed in minimal medium. Soft-

ware-aided DNA density volume measurements, showed that the P. aeruginosa cultures except

culture of ΔmurF, contained a low basal level of extracellular DNA in the initial-log phase of

growth (2 hours), and that a large amount of DNA was released in the late-log phase of growth

(Fig 5). After 4 hours, sudden increase of extracellular DNA in wild-type, ΔmurD and ΔmurF
cultures was observed, while the DNA amount remained low in the other mutants. This

increase was followed by substantial increases of extracellular DNA after 8 hours in all except

in ΔrmlA cultures. Obviously ΔrmlA cultures contained the lowest extracellular DNA among

the whole time course. Fig 5 shows that a large amount of extracellular DNA was released spe-

cifically in the late-log phase of ΔmurD growth. The low level of DNA release in ΔrmlA cultures

correlated well with the delayed initial mid-log in LB and suggested that quorum sensing and

biofilms might be affected seriously in this mutant [36–38].

Cell wall mutants are sensitive to macrophage-mediated killing

On the basis of the association of outer leaflet murein, and LPS biosynthesis genes with viru-

lence of most Gram-negative bacteria, we hypothesized that deletion of the these genes would

lead to attenuation of intracellular macrophage growth [11, 13–16, 18, 28]. Encouraged by the

growth rate decrease of most of the mutants in defined media, we measured the sensitivity of

bacterial cells to macrophage-mediated killing. We performed macrophage cell culture inva-

sion assay for both the wild-type and mutants using the murine J774 macrophage cell line in
vitro. Macrophage cultures were infected with bacterial suspensions and intracellular bacteria

were recovered in order to determine the number of surviving bacterial cells. As shown in Fig

6, all cell wall mutants were much more sensitive to macrophage-mediated killing than wild-

type PAO1. These results suggested that cell wall biosynthesis genes are necessary for survival

inside macrophages.

Intratracheal lung infection of NMRI mice

For further validation of outer cell wall biosynthesis genes as potential targets for novel drugs

against P. aeruginosa infections, NMRI mice were intratracheally infected with agarose beads

loaded with P. aeruginosa PAO1 and mutants as described in the method section. In our
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preliminary studies, incubation duration of 72 hours was found to yield the most significant

results. Mice were separated in different groups of 10 animals each. 72 hours post infection the

lungs were dissected and their homogenates were plated in different dilutions for quantifica-

tion of the bacterial infectivity. In this study, P. aeruginosa PAO1 ΔmurF and ΔwaaA did not

show any decrease in total bacterial counts compared to the wild-type (WT) strain (Fig 7). In

contrast, ΔmurA, ΔmurD, ΔppiB and ΔrmlA show reduced bacterial burden in mice. These

results demonstrated that the murA, murD, ppiB and rmlA genes are required for infectivity

and growth of P. aeruginosa in an in vivo model of infection while murF and waaA genes not.

The k.o mutations in cell wall targets compromise P. aeruginosa in a

plant virulence model

Apparently, the deletion of cell wall biosynthesis genes substantially decreased the in vitro
intracellular survival in the murine macrophages and the in vivo survival in NMRI mice model

of infection. For further assessment of the missing genes on the virulence of P. aeruginosa, we

employed the lettuce leaf model of infection. Earlier studies used the plant as an in vivo model

for identification of unknown P. aeruginosa virulence factors (genes) in mammalian pathogen-

esis [33, 39–41]. All these studies clearly demonstrated that the P. aeruginosa virulence

Fig 5. Cell wall genes dependent release of extracellular DNA. PAO1wild-type and cell wall targets mutants were grown in LB medium.

Supernatant samples were collected after the respected time. DNA release was delayed and was much lower in the PAO1 rmlA mutants.

Standard errors represent the mean of three independent experiments.

https://doi.org/10.1371/journal.pone.0186801.g005
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Fig 6. Macrophage-mediated bactericidal assay. Deletion of cell wall biosynthesis genes resulted in a

significantly decreased survival of the bacteria. Standard errors of mean of 3 experimental points are shown.

https://doi.org/10.1371/journal.pone.0186801.g006

Fig 7. Assessment of the effect of cell wall targets gene deletion in vivo. Quantification of P. aeruginosa

colonies grown in the lung of mice intratracheally infected with agarose beads loaded with the P. aeruginosa

mutants in comparison to PAO1 wild-type (WT).

https://doi.org/10.1371/journal.pone.0186801.g007
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mechanisms and factors are conserved between plant and animal models [40, 41]. Interest-

ingly, the plant model disclosed a significant difference between the wild-type and mutants in

infection symptoms. We found that lettuce was not susceptible to infection by ΔmurD, ΔmurF
and ΔrmlA (Fig 8). These mutants strain did not cause any infection symptoms to the leaves

even after a prolonged incubation period. In contrast, the wild-type, caused necrotic lesions

just after three days post-infection. ΔwaaA and ΔppiB elicited delayed weak rotting symptoms

on lettuce stems. Surprisingly, ΔmurA proliferated in lettuce leaves and elicited disease symp-

toms similar to those elicited by wild-type (Fig 8). At day 7 of infection, ΔmurA P. aeruginosa
strain invaded the entire midrib of a lettuce leaf resulting in severe maceration (S2 Fig); the

infection severity is even more than what was observed for wild-type.

Discussion

Drug development against P. aeruginosa infections requires detailed information on the puta-

tive drug targets which are validated. Construction and characterisation of specific gene dele-

tions of targets in the host strain is an excellent way for such validations. We constructed

knockout mutants of six cell wall targets to investigate the essentiality of candidate genes. We

employed a verified knockout system using pEX18Ap suicide vector as our successful tool for

knockout [29, 30]. We were able to inactivate the cell wall targets at the bacterial chromosomal

locus. In support of a role for cell wall biosynthesis and involvement in environmental versatil-

ity of P. aeruginosa [11–14, 16, 18–21, 24], the construction of the P. aeruginosa murA, murD,

murF, ppiB, rmlA and waaA mutants resulted in dramatic changes in the growth properties in

minimal media compared with the wild-type (Figs 3 and 4). Major changes in the size and

morphology of the colonies were also observed when cultures were grown on solid media. Pre-

viously, cell elongation in P. aeruginosa was reported to be caused by nutrient deprivation and

anaerobic respiration [34, 42]. It was postulated that bacteria elongate to increase their nutrient

uptake and to respond to nitric oxide, a spontaneous byproduct of the anaerobic respiration.

Remarkably, here we observed that ΔmurF cells were highly elongated (Fig 4B) compared to

the wild-type and other mutants. Unlike the previous reports, our results suggest that cell elon-

gation could be a consequence of gene function loss and has significant effects on the physio-

logical process, cell division and on formation of septal peptidoglycan [34, 35]. The issues

underlying the short cell size exhibited by wild-type and mutants cells and their subsequent

adaptation to growth on minimal medium have not been further clarified. In this study we

have clearly demonstrated that knockout of cell wall targets strongly remodels the extracellular

Fig 8. Plant (lettuce) virulence assay with the P. aeruginosa PAO1 and cell wall biosynthesis genes mutants. The figure represents

lettuce midribs after 5 days of infection. Infection by PAO1 wild-type and murA mutant shows necrosis and tissue maceration. Three

independent experiments gave similar results.

https://doi.org/10.1371/journal.pone.0186801.g008
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DNA release in LB media. Significantly, ΔrmlA released very low DNA amount which suggests

that rmlA contributes to interbacterial signaling and multi-cellular development processes in

Pseudomonas biofilms [4, 36–38].

Furthermore, our results also demonstrated the impaired ability of these mutants to repli-

cate in murine macrophages. In this study, we tested the infectivity of PAO1 mutants in the

lung infection model. Using this method we are able also to examine directly whether individ-

ual gene knockout in PAO1 has lethality effect in the PAO1 strain in the lung. With two major

exceptions, the growth of these k.o mutants was severely diminished in vivo in mice compared

to that of wild-type (Fig 7). This indicates that P. aeruginosa PAO1 ΔmurF and ΔwaaA do not

constitute a regulator controlling P. aeruginosa growth-associated virulence, but the other tar-

gets do so. Interestingly, the P. aeruginosa PAO1 ΔmurF and ΔwaaA mutants were attenuated

for intracellular macrophage survival.

Discernibly, several studies have shown that the P. aeruginosa virulence determinants

are conserved within animal and plant models [33, 40, 41]. The mutant of murA proliferated

in lettuce leaves and severely caused disease symptoms even more than the wild-type espe-

cially at late infection phase (S2 Fig). It is interesting to speculate that murA mutation was

spontaneously complemented in the plant model. The peptidoglycan building stone,

UDP-N-MurAc, forms from UDP-N-acetyl-D-glucosamine (UNAG) and phosphoenolpyr-

uvic acid via murA reactions. murA catalyzes unusual reaction where the transfer of the

enolpyruvyl moiety of phosphoenolpyruvic acid to the 30-hydroxyl group of UNAG medi-

ated through cleavage of C-O bond of PEP and not via addition-elimination process utiliz-

ing the high energy P-O bond [43, 44]. The shikimate pathway in plants contains AroA

(5-enolpyruvylshikimate-3-phosphate synthase), the only enzyme known to catalyze the

identical unusual reaction as murA [44, 45]. This finding indicates that the AroA enzyme

from the plant might replace the function of murA. Other possible explanation is the aboli-

tion of the synthesis of UDP-N-MurAc, could be replaced by another similar sugar from the

plant.

Understanding the details of aftereffect of the functional loss of targeted gene would lay the

framework for a focused strategy of drug design. Future work could now be directed towards

whole-genome effects of these mutants. Microarray-based comparative techniques could be

applied to learn more about the interplay between these mutations and ecological versatility of

this pathogen. The current report provides initial insights into the relationship between the

targets studied and the cell and colony characteristics of P. aeruginosa. This study also provides

definitive evidence that cell wall targets activity contributes to intramacrophage/mice survival

and pathogenesis. Thus, these results identify peptidoglycan/LPS assembly in the P. aeruginosa
cell wall as essential targets which are expected to significantly increase the probability of find-

ing novel anti-pseudomonas therapeutic drugs.

Supporting information

S1 Fig. Genetic analysis by specific PCR to pEX18Ap vector backbone and Gm-gfp cassette.

Knockout of the native genes in the PAO1 strain was verified by PCR analysis. Chromosomal

DNA of mutant strains was used as templates in PCR reactions. Upper gel part): using internal

specific primers for Gm-gfp cassette, the expected 425 bp. Which confirm the insertion of the

Gm-gfp cassette at the chromosomal locus. Lower gel part): For these mutants the absence of

pEX18Ap vector backbone was confirmed by using backbone specific primers (538 bp PCR

Product). The PCR reactions were analyzed by gel-electrophoresis on 1% agarose gel. The first

lane contains molecular size markers (GeneRuler 1 kb DNA Ladder, Thermo Scientific).

(PDF)
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S2 Fig. Plant (lettuce) infection assay with the P. aeruginosaPAO1 and murA mutant

strain. The figure represents lettuce midribs after 6 and 7 days of infection. Infection by murA
mutant shows severe necrosis/maceration the infection symptoms more than wild-type. Three

independent experiments gave similar results.

(PDF)
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