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DIFFERENCES OF IDEMPOTENTS IN C
∗
-ALGEBRAS
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Abstract: Suppose that P and Q are idempotents on a Hilbert space H , while Q = Q∗ and I is
the identity operator in H . If U = P − Q is an isometry then U = U∗ is unitary and Q = I − P .
We establish a double inequality for the infimum and the supremum of P and Q in H and P − Q.
Applications of this inequality are obtained to the characterization of a trace and ideal F -pseudonorms
on aW ∗-algebra. Let ϕ be a trace on the unital C∗-algebra A and let tripotents P and Q belong to A .
If P −Q belongs to the domain of definition of ϕ then ϕ(P −Q) is a real number. The commutativity
of some operators is established.
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Introduction

Let P and Q be idempotents on a Hilbert space H . Various properties (invertibility, Fredholm
property, nuclearity, positivity, etc.) of the difference P − Q were studied in [1–6]. Each tripotent
(A = A3) is the difference P −Q of some idempotents P and Q with PQ = QP = 0 [7, Proposition 1].
Therefore, tripotents inherit some properties of idempotents [8].
In this article, we obtain some new results on P−Q. We prove that the isometry of U = P−Q, where

Q∗ = Q, implies the unitarity of U and the equality Q = I−P (Theorem 1). We give an example showing
the substantiality of the condition Q∗ = Q. If P ∗ = P then P ∧Q⊥+P⊥∧Q ≤ |P −Q| ≤ P ∨Q−P ∧Q
with equality in the second inequality if and only if PQ = QP (Theorem 2 and Proposition 1). Using
this operator inequality, we establish a new inequality that characterizes traces on a W ∗-algebra A

(Corollary 4). Applications are obtained to ideal F -pseudonorms on A (Corollary 7).
Let ϕ be a trace on a unital C∗-algebra A , let Mϕ be the domain of definition of ϕ, and let P

and Q belong to A . If P −Q ∈Mϕ then ϕ(P −Q) ∈ R (Theorem 3). Theorem 3 is a C∗-analog of the
following familiar assertion [6]: If P and Q are idempotents in H and P − Q belongs to the ideal S1
of trace class operators then the canonical trace tr(P − Q) belongs to Z. Let A be a C∗-algebra and
let (E ,≺) be a partially ordered set. We establish a monotonicity criterion for a mapping from A + into E

(Proposition 2).

1. Definitions and Notations

By a C∗-algebra we mean a complex Banach ∗-algebra A such that ‖A∗A‖ = ‖A‖2 for all A ∈ A .
Given a C∗-algebra A , denote by A id, A sa, and A + the sets of its idempotents, Hermitian elements, and
positive elements respectively. If A ∈ A then |A| =

√
A∗A ∈ A +. If A ∈ A sa then A+ = (|A| + A)/2

and A− = (|A| − A)/2 lie in A + and A = A+ − A−, A+A− = 0. A W ∗-algebra is a C∗-algebra A

having a predual Banach space A∗ : A ≃ (A∗)∗. For a W ∗-algebra A , denote by A u and A pr its
subsets of unitary elements and the projection lattice respectively. If I is the unity of A and P ∈ A id

then P⊥ = I − P ∈ A id.
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