DIFFERENCES OF IDEMPOTENTS IN C^* -ALGEBRAS

© A. M. Bikchentaev

UDC 517.98

Abstract: Suppose that P and Q are idempotents on a Hilbert space \mathscr{H} , while $Q = Q^*$ and I is the identity operator in \mathscr{H} . If U = P - Q is an isometry then $U = U^*$ is unitary and Q = I - P. We establish a double inequality for the infimum and the supremum of P and Q in \mathscr{H} and P - Q. Applications of this inequality are obtained to the characterization of a trace and ideal F-pseudonorms on a W^* -algebra. Let φ be a trace on the unital C^* -algebra \mathscr{A} and let tripotents P and Q belong to \mathscr{A} . If P - Q belongs to the domain of definition of φ then $\varphi(P - Q)$ is a real number. The commutativity of some operators is established.

DOI: 10.1134/S003744661702001X

Keywords: Hilbert space, linear operator, idempotent, tripotent, projection, unitary operator, trace class operator, operator inequality, commutativity, W^* -algebra, C^* -algebra, trace, ideal F-norm

Introduction

Let P and Q be idempotents on a Hilbert space \mathscr{H} . Various properties (invertibility, Fredholm property, nuclearity, positivity, etc.) of the difference P - Q were studied in [1–6]. Each tripotent $(A = A^3)$ is the difference P - Q of some idempotents P and Q with PQ = QP = 0 [7, Proposition 1]. Therefore, tripotents inherit some properties of idempotents [8].

In this article, we obtain some new results on P-Q. We prove that the isometry of U = P-Q, where $Q^* = Q$, implies the unitarity of U and the equality Q = I-P (Theorem 1). We give an example showing the substantiality of the condition $Q^* = Q$. If $P^* = P$ then $P \wedge Q^{\perp} + P^{\perp} \wedge Q \leq |P-Q| \leq P \vee Q - P \wedge Q$ with equality in the second inequality if and only if PQ = QP (Theorem 2 and Proposition 1). Using this operator inequality, we establish a new inequality that characterizes traces on a W^* -algebra \mathscr{A} (Corollary 4). Applications are obtained to ideal F-pseudonorms on \mathscr{A} (Corollary 7).

Let φ be a trace on a unital C^* -algebra \mathscr{A} , let \mathfrak{M}_{φ} be the domain of definition of φ , and let Pand Q belong to \mathscr{A} . If $P - Q \in \mathfrak{M}_{\varphi}$ then $\varphi(P - Q) \in \mathbb{R}$ (Theorem 3). Theorem 3 is a C^* -analog of the following familiar assertion [6]: If P and Q are idempotents in \mathscr{H} and P - Q belongs to the ideal \mathfrak{S}_1 of trace class operators then the canonical trace $\operatorname{tr}(P - Q)$ belongs to \mathbb{Z} . Let \mathscr{A} be a C^* -algebra and let (\mathscr{E}, \prec) be a partially ordered set. We establish a monotonicity criterion for a mapping from \mathscr{A}^+ into \mathscr{E} (Proposition 2).

1. Definitions and Notations

By a C^* -algebra we mean a complex Banach *-algebra \mathscr{A} such that $||A^*A|| = ||A||^2$ for all $A \in \mathscr{A}$. Given a C^* -algebra \mathscr{A} , denote by $\mathscr{A}^{\mathrm{id}}$, $\mathscr{A}^{\mathrm{sa}}$, and \mathscr{A}^+ the sets of its idempotents, Hermitian elements, and positive elements respectively. If $A \in \mathscr{A}$ then $|A| = \sqrt{A^*A} \in \mathscr{A}^+$. If $A \in \mathscr{A}^{\mathrm{sa}}$ then $A_+ = (|A| + A)/2$ and $A_- = (|A| - A)/2$ lie in \mathscr{A}^+ and $A = A_+ - A_-$, $A_+A_- = 0$. A W^* -algebra is a C^* -algebra \mathscr{A} having a predual Banach space $\mathscr{A}_* : \mathscr{A} \simeq (\mathscr{A}_*)^*$. For a W^* -algebra \mathscr{A} , denote by \mathscr{A}^{u} and $\mathscr{A}^{\mathrm{pr}}$ its subsets of unitary elements and the projection lattice respectively. If I is the unity of \mathscr{A} and $P \in \mathscr{A}^{\mathrm{id}}$ then $P^{\perp} = I - P \in \mathscr{A}^{\mathrm{id}}$.

The author was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (Grant 15–41–02433).

Kazan. Translated from *Sibirskii Matematicheskii Zhurnal*, Vol. 58, No. 2, pp. 243–250, March–April, 2017; DOI: 10.17377/smzh.2017.58.201. Original article submitted March 21, 2016.