На правах рукописи

ЛИ ВИТАЛИЙ МОЕСЕЕВИЧ

СИНТЕЗ АЗА-ДИАРИЛЭТИЛЕНОВ ДЛЯ МОЛЕКУЛЯРНЫХ ФОТОПЕРЕКЛЮЧАТЕЛЕЙ И ЛОГИЧЕСКИХ УСТРОЙСТВ

02.00.03 - органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Черноголовка - 2011

Работа выполнена в лаборатории органической и супрамолекулярной фотохимии отдела нанофотоники Института проблем химической физики РАН

Научиый руководитель: доктор химических наук Будыка Михаил Федорович

Официальные оппоненты: доктор химических наук Лермонтов Сергей Андреевич

кандидат химических наук Зюзин Игорь Николаевич

Ведущая организация: Центр Фотохимии РАН, г. Москва

Защита состоится «24» мая 2011 г. в 1460 часов на заседании диссертационного совета Д 002.102.01 по химическим наукам при Институте физиологически активных веществ РАН, по адресу: 142432, Московская область, Ногинский район, г. Черноголовка, Северный проезд, 1.

С диссертацией можно ознакомиться в библиотеке Института физиологически активных веществ РАН.

Ученый секретарь диссертационного совета Д 002.102.01, кандидат биологических наук

Афанасьева М. А.

НАУЧНАЯ БИБЛИОТЕКА КГУ

0000676916

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

АКТУАЛЬНОСТЬ ТЕМЫ. Реакция фотоизомеризации диарилэтиленов (ДАЭ) является одной из важнейших реакций, теоретические и прикладные аспекты которой активно исследуются на протяжении многих лет. Ее прикладные аспекты связаны, прежде всего, с фотохромными свойствами ДАЭ, которые используются для создания средств записи и обработки информации, а в последнее время и для различных фотопереключателей и логических устройств.

ДАЭ сами по себе являются молекулярными фотопереключателями, т.к. имеют два термически стабильных изомера, обладающих разными свойствами (поглощение света, люминесценция, поляризуемость и т.д.), и способных под действием света обратимо переходить друг в друга. Молекулярное логическое устройство (МЛУ) на основе ДАЭ должно содержать дополнительные функциональные группы, чтобы сигнал на выходе МЛУ, т.е. отклик системы в целом, зависел от комбинации сигналов на входе, т.е. от воздействий на эти функциональные группы.

Известны разные варианты использования дополнительных функциональных групп для контроля свойств ДАЭ. Например, в Центре Фотохимии РАН изучается возможность управления реакцией фотоизомерзации путем построения супрамолекулярных систем, содержащих стириловые красители и краун-эфирные группы. Изменение свойств таких систем при комплексообразовании с ионами различных металлов может быть использовано для создания селективных оптических молекулярных сенсоров, в средствах записи и хранения информации.

Особый интерес для разработки МЛУ представляют аза-гетероароматические ДАЭ (аза-ДАЭ), содержащие в своей структуре эндоциклический атом азота. Протонирование/депротонирование атома азота приводит к изменению спектральных и фотохимических свойств аза-ДАЭ, что дает возможность легко и обратимо переключать систему между разными состояниями и управлять ее свойствами.

Несмотря на многочисленные исследования свойств аза-ДАЭ, в литературе имеется пробел в описании их фотохимических свойств и в теоретических представлениях о реакции фотоизомеризации аза-ДАЭ. Тем не менее, знание факторов, влияющих на эту реакцию, необходимо для разработки научных основ создания управляемых молекулярных фотопереключателей и логических устройств.

Для восполнения существующего пробела необходимо было синтезировать ряд аза-ДАЭ, как новых, так и известных ранее, свойства которых были недостаточно изучены, исследовать их спектральные и фотохимические свойства и использовать полученные данные для создания модельных МЛУ.

ЦЕЛЬ РАБОТЫ – синтез гетероароматических аза-ДАЭ, в том числе позиционных изомеров стирилхинолинов и стирилазаантраценов; исследование фотохимических свойств аза-ДАЭ и возможности построения на их основе управляемых фотопереключателей и молекулярных логических устройств.

НАУЧНАЯ НОВИЗНА. Разработан быстрый, эффективный и экологически безопасный метод синтеза производных 2- и 4-стирилхинолинов и 1-стирилизохинолина с использованием микроволнового излучения и хлорида цинка в отсутствие растворителя.

Впервые показано, что конденсация гидрокси- и карбоксибензальдегидов с различными метилхинолииами под действием микроволнового излучения протекает

без добавления внешнего катализатора, в роли которого в данном случае выступает соответствующий ароматический альдегид. Предложенный подход позволяет использовать каталитические возможности незащищенных гидроксильных и карбоксильных групп для получения гидрокси- и карбоксистирилхинолинов в одну стадию.

Найдено, что конденсации метилгетероциклов, имеющих неактивированную метильную группу, с бензальанилином под действием *трет*-бутилата калия и краунэфира в N,N-диметилформамиде легко протекают под действием микроволнового излучения, что позволяет сократить время протекания реакций по сравнению с традиционным подходом с 3-4 ч до 10-15 мин.

Показано, что аннелирование бензольного кольца в 2-стирилхинолине приводит к потере эффекта увеличения квантового выхода транс-цис фотоизомеризации в протонированной форме, а при аннелировании хинолинового кольца, приводящем к аза-гетероароматическим производным 2-стирилантрацена, происходит потеря фотохимической активности соответствующего *транс*-стирилазаантрацена.

Впервые показано, что фотоциклизация 8-*транс*-стирилхинолина протекает как по двухквантовому, так и по одноквантового пути, что свидетельствует о том, что транс-цис фотоизомеризация этого соединения, по крайней мере, частично происходит по адиабатическому механизму, когда из возбужденного *транс*-изомера получается *цис*-изомер также в возбужденном состоянии.

Впервые показано, что для 1-(2-пиридил)-2-(2-хинолил)этилена наблюдается эффект протон-управляемой фотоизомеризации. Эффект, по-видимому, обусловлен образованием внутримолекулярной водородной связи, которая проявляется также в спектре поглощения монопротонированной формы *цис*-изомера.

Показано, что 1-(2-пиридил)-2-(2-хинолил)этилен может моделировать действие молекулярных логических устройств, для которых входными сигналами являются облучение светом и протонирование, выходным сигналом — оптическая плотность, а тип действия которых — "ЗАПРЕТ" ("INH"), "ИЛИ" ("OR") — зависит от длины волны считывающего света.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ. Разработанный микроволновый метод синтеза производных 2- и 4-стирилхинолинов и 1-стирилизохинолина с использованием в качестве катализатора хлорида цинка в отсутствие растворителя исключительно удобен в практическом использовании, поскольку он, в отличие от традиционных методов проведения конденсаций, не требует многочасового нагревания реакционной смеси и использования значительных объемов органических растворителей для выделения целевого продукта. В частности, конденсация хинальдина с 4гидроксибензальдегидом, которая протекает без растворителя катализатора под действием микроволнового излучения, представляет собой лучший на сегодняшний день метод синтеза 2-(4-гидроксистирил)хинолина, который является важным соединением для фармакологической химии и прекурсором для синтеза фоточувствительных супрамолекулярных систем. Использование микроволнового излучения для проведения конденсаций бензальанилина с метилгетероциклами с пониженной активностью метильной группы представляет собой усовершенствование традиционного метода.

Результаты проведенных исследований расширяют и дополняют имеющиеся данные по фотохимическим свойствам аза-ДАЭ, а также показывают возможность использования их для построения молекулярных догических устройств.

фил. — Метан наук российской обервации фил. — Метан наук российской обервации — Макельный Университет, от: и бол бол бол от е ка Илучная библиотека им: Н.И.Лобачевского ЛИЧНЫЙ ВКЛАД. Лично автором или при его непосредственном участии были синтезированы все соединения (аза-ДАЭ), получены все спектральные и фотохимические данные. Автором осуществлено: проведение всех фотохимических экспериментов, обработка полученых данных, расчеты квантовых выходов, совместная с руководителем интерпретация экспериментальных результатов, формулировка основных выводов и научных положений.

АПРОБАЦИЯ РАБОТЫ. По результатам работы опубликовано 5 статей, 17 тезисов докладов. Результаты проведенных исследований докладывались на следующих конференциях и симпозиумах: "Молодая наука в классическом университете", Иваново, 2008, 2009, 2010; XI Молодежная научная школаконференция по органической химии, Екатеринбург, 23-29 ноября 2008; Международная научная конференция студентов, аспирантов и молодых ученых "Ломоносов", Москва, 2009, 2010; Всероссийская конференция по органической химии, 25-30 октября 2009, Москва; V International Conference Chemistry of Nitrogen Containing Heterocycles CNCH-2009, 5-9 October, 2009, Kharkov, Ukraine; XII Молодежная конференция по органической химии, Суздаль, 7-11 декабря 2009; XXIV International conference on photochemistry ICP2009, Toledo, Spain, July 19-24, 2009; XXIII IUPAC Symposium on Photochemistry, July 11-16, 2010, Ferrara, Italy; XXII Симпозиум "Современная химическая физика", Туапсе, 24 сентября – 5 октября 2010; III Международная конференция "Химия гетероциклических соединений", Москва, 18-21 октября 2010 г.

ОБЪЕМ И СТРУКТУРА ДИССЕРТАЦИИ. Диссертация состоит из введения, литературного обзора, посвященного методам синтеза вицинальных пиридил- и хинолиларилэтенов, двух глав обсуждения полученных результатов, экспериментальной части, в которой описаны методы синтеза целевых соединений и фотохимических исследований, выводов, списка публикаций по теме диссертации и списка цитируемой литературы, содержащего 179 наименований. Работа изложена на 171 странице, содержит 21 рисунок, 28 таблиц, 102 схемы.

Работа выполнялась в соответствии с планами научно-исследовательских работ Института Проблем Химической Физики, при поддержке РФФИ, гранты № 07-03-00891 и 10-03-00751, и по Программе фундаментальных исследований президиума РАН «Разработка методов получения химических веществ и создание новых материалов», подпрограмма: «Полифункциональные материалы для молекулярной электроники», тема: «Разработка научных основ дизайна и создания управляемых фотопереключателей и логических устройств на основе аза-диарилэтиленов».

СТРУКТУРА И ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введенин (глава 1) обоснована актуальность работы, сформулированы ее цели, научная новизна и практическая значимость.

Глава 2. Обзор литературы

В главе 2 (литературном обзоре) рассматриваются основные методы синтеза аза-ДАЭ. Методы получения вицинальных пиридил- и хинолиларилэтенов разделены на несколько групп в зависимости от исходных соединений и условий проведения реакций. Среди них можно выделить как общие методы получения гетероароматических диарилэтиленов, содержащих шестичленные ароматические азагетероциклы, так и специфические методы синтеза, присущие только классу соответствующих гетероциклов. К первому типу относятся реакции кросс-сочетания, катализируемые комплексами переходных металлов, гидрирования диарилацетиленов, а также реакции Кневенагеля, Виттига и Меервейна. Ко второму типу относятся конденсации метилхинолинов И метилпиридинов ароматическими альдегидами в присутствии кислотных или основных катализаторов, также реакции, основанные на различных способах гетероароматического ядра.

По результатам обзора литературы в качестве основного метода синтеза 2- и 4стирилхинолинов выбрана конденсация соответствующих метилгетероциклов с ароматическими альдегидами ввиду доступности исходных реагентов и простоты проведения реакции.

Глава 3. Обсуждение результатов

Данная глава состоит из двух частей. Первая часть посвящена синтезу азадиарилэтиленов различными методами. Во второй части приведено описание фотохимических свойств синтезированных соединений и модельных молекулярных логических устройств на основе молекулы 1-(2-пиридил)-2-(2-хинолил)этилена.

3.1. Синтез яза-гетерояромятических диарилэтиленов

3.1.1. Синтез производных 2-стирилхинолина

Производные 2-стирилхинолина (2СХ) были синтезированы по реакции конденсации хинальдина с ароматическими альдегидами. Серия соединений 1-10 была получена традиционным методом: в качестве конденсирующих агентов использовались Ac₂O или PhCOCl в DMF в случае нитропроизводного 1 (схема 1).

Схема 1

Ar = $4-C_6H_4X$: X = $NO_2(1)$, 70%; COOH (2), 67%; F (3), 57%; CI (4), 52%; I (5), 54%; OEt (6), 46%; 1-naphtyl (7), 50%; 2-naphtyl (8), 53%; 9-anthryl (9), 44%; 2-pyridyl (10), 27%

Проведение конденсаций традиционным способом предполагает длительное нагревание реакционных смесей, при этом часто происходит осмоление и возможно образование побочных продуктов, что усложняет процедуру выделения целевых соединений. Поскольку для детального исследования спектральных и фотохимических свойств аза-ДАЭ необходимо было получить несколько серий соединений, то нужно было разработать быстрый, экономичный и экологически безопасный метод синтеза.

Этим критериям удовлетворяет метод синтеза с использованием микроволнового излучения в отсутствие растворителя, позволяющий сократить время протекания реакций с часов до нескольких минут, избежать образования побочных продуктов и облегчить процедуру выделения целевых соединений.

Было обнаружено, что хинальдин легко вступает в реакцию с бензальдегидом в присутствии безводного хлорида цинка без растворителя под действием

микроволнового излучения (реакция проводилась на водяной бане, использовалась бытовая микроволновая печь марки DAEWOO-KOR-4115SA, мощность микроволнового излучения (MWI) 600 Вт).

Исследование кинетики накопления 2CX показало, что уже за 1 минуту микроволнового воздействия в реакционной смеси, содержащей 1 экв хинальдина, 2 экв бензальдегида и 0.45 экв хлорида цинка, образуется значительное количество продукта, а, начиная с 10-12 мин облучения, выход 2CX практически не меняется (табл. 1).

Таблица 1. Зависимость выхода 2CX от времени облучения реакционной смеси и соотношения реагентов

Соотношенне хинальднн:PhCHO:ZnCl ₂	Время облучения, мин	Выход, %	Соотношение хинальдин:PhCHO:ZnCl ₂	Время облучения, мин	Выход, %
1:2:0.45	0	0	2:1:0.45	10	37
1:2:0.45	1	37	1:1:0.45	10	58
1:2:0.45	2	57	1:2:0.45	10	78
1:2:0.45	3	65	1:3:0.45	10	97
1:2:0.45	5	70			
1:2:0.45	8	75	1:2:0	10	0
1:2:0.45	10	78	1:2:0.25	10	61
1:2:0.45	12	79	1:2:0.45_	10	78
1:2:0.45	16	77	1:2:1	10	76

При исследовании влияния соотношения реагентов найдено, что выход 2СХ возрастает с увеличением количества альдегида и становится почти количественным при использовании тройного избытка альдегида. Однако в большинстве случаев практичнее использовать двойной избыток ароматического альдегида, поскольку в этом случае выходы стирилхинолинов достаточно высоки, а затраты на дорогостоящие альдегиды ниже и проще процедура очистки целевого продукта от избытка оставшегося в реакционной смеси альдегида. Анализ зависимости выхода 2СХ от количества хлорида цинка показал, что использование последнего в количестве более 0.45 экв не оправдано, поскольку выход продукта практически не меняется. Таким образом, в дальнейшем для синтетических целей мы использовали следующее соотношение исходных реагентов: 1 экв хинальдина, 2 экв ароматического альдегида и 0.45 экв хлорида цинка.

По разработанной методике с использованием микроволнового излучения были синтезированы различные производные 2СХ — продукты конденсации хинальдина с различными ароматическими и гетероциклическими альдегидами (схема 2), кроме того, помимо хинальдина в реакции конденсации вводился его бензоаннелированный аналог — 3-метилбензо[f]хинолин (схема 3). Во избежание осмоления реакционной смеси здесь и далее в работе использовался импульсный режим проведения реакций (1-5 мин облучения — 30 с пауза для охлаждения). Выходы и оптимальные суммарные времена облучения реакционной смеси в микроволновой печи приведены в табл. 2.

Схема 2

Таблица 2. Синтез производных 2СХ под действием микроволнового излучения с

использованием в качестве катализатора хлорида цинка.

N₂	Ar	Время облучения, мин	Выход,	№	Ar	Время облучения, мин	Выход, %
1	4-C ₆ H ₄ NO ₂	5	78	11	C ₆ H ₅	12	63
3	4-C ₆ H₄F	12	64	12	4-C ₆ H ₄ COOMe	10	67
5	4-C ₆ H ₄ I	12	61	13	4-C ₆ H ₄ NMe ₂	15	60
6	4-C ₆ H₄OEt	12	62	14	2-C ₆ H₄OH	10	66
7	l-naphthyl	10	62	15	4-C ₆ H ₄ OH	10	71
8	2-naphthyl	10	65	16	3-pyridyl	11	66
9	9-anthryl	14	46	17	4-pyridyl	12	60
10	2-pyridyl	10	65				

Cxeua 3

20, Ar = pnenyl 57% 21, Ar = 2-pyridyl 59%

Интересный случай представляет собой реакция хинальдина с ароматическим диальдегидом — *бис*-(4-формилфенокси)пропаном, поскольку она может привести к двум продуктам: моностирилпроизводному 19 и дистирилпроизводному 18 (схема 4). При использовании четырехкратного избытка хинальдина и времени микроволнового облучения 20 мин были выделены оба соединения в количественном соотношении 18:19 около 5:1.

Схема 4

В табл. 3 сравниваются два метода синтеза производных 2СХ. Видно, что проведение реакции в бытовой микроволновой печи позволяет сократить время реакции до нескольких минут и увеличить выход целевого продукта по сравнению со стандартной конденсацией в уксусном ангидриде, а также облегчить процедуру выделения продуктов и минимизировать затраты органических растворителей. Таким образом, разработанный подход к синтезу 2СХ с использованием бытовой микроволновой печи и хлорида цинка оказывается очень эффективным и удобным методом синтеза.

Таблица 3.	Сравнение	традиционной	И	микроволновой	методик	синтеза	производных
2CX.							

	N₂	Вре реакц		Выход	ц, %		N₂	Вре реакц		Выхо	д, %
Ar		Трад.	MB	Трад.	МВ	Ar		Трад.	MB	Трад.	MB
4-C ₆ H₄F	3	14	0.20	57	64	2-naphtyl	8	14	0.17	53	65
4-C ₆ H₄I	5	14	0.20	54	61	9-anthryl	9	14	0.23	44	46
4-C ₆ H₄OEt	6	14_	0.20	46	62	2-pyridyl	10	14	0.17	27	65
1-naphtyl	7	14	0.17	50	62						

Обычно при отсутствии хлорида цинка реакции конденсации хинальдина с ароматическими альдегидами в микроволновой печи в тех же условиях не протекали. Однако оказалось, что конденсация хинальдина и его производных с 4-гидроксибензальдегидом успешно проходит и без хлорида цинка (схема 5). Для проведения реакций, как и в предыдущих случаях, использовался двукратный избыток альдегида.

Cxeya 5

Способность 4-гидроксибензальдегида вступать в реакцию конденсации с хинальдином в отсутствие внешнего катализатора можно объяснить возможностью образования водородной связи между гетероатомом азота и фенольным протоном 4-гидроксибензальдегида, которая способствует повышению реакционной способности метильной группы хинальдина. Таким образом, в качестве катализатора реакции конденсации выступает 4-гидроксибензальдегид и дополнительный катализатор не требуется.

В отличие от 4-гидроксибензальдегида, салициловый альдегид не вступал в реакцию с хинальдином в аналогичных условиях, что можно объяснить образованием внутримолекулярной водородной связи между фенольным протоном и кислородом карбонильной группы этого альдегида, которая препятствует активации гетероатома азота. В более жестких условиях, при облучении реакционной смеси при температуре 170°С в течение 30 мин, удалось получить целевой 2-(2-гидроксистирил)хинолин 14 с выходом 15%. Салициловые альдегиды, содержащие нитрогруппу в положениях 3 или 5, напротив, легко вступали в реакцию конденсации с хинальдином в тех же условиях, что и 4-гидроксибензальдегид, образуя при этом соответствующие продукты 25 и 26 с выходами 61% и 67% соответственно (схема 6).

Схема 6

Попытки получения 2-(4-карбоксистирил)хинолина 2 по реакции конденсации хинальдина с 4-формилбензойной кислотой в отсутствие растворителя как без применения внешнего катализатора, так и при использовании в качестве последнего хлорида цинка не увенчались успехом, что можно объяснить тем, что 4-формилбензойная кислота обладает очень высокой температурой плавления (246 °C) и не образует гомогенную систему с хинальдином, в то время как другие твердые альдегиды легко образуют гомогенный расплав. Однако, если реакцию конденсации проводить в DMF под действием микроволнового излучения в отсутствие внешнего катализатора, то удается получить целевой продукт 2 с выходом 68% (схема 7).

Схема 7

Предложенный подход к синтезу гидрокси- и карбоксистирилхинолинов позволяет использовать каталитические возможности незащищенных гидроксильных и карбоксильных групп для получения целевых соединений в одну стадию.

Для более детального исследования каталитических свойств фенолов и ароматических карбоновых кислот были осуществлены конденсации хинальдина с ароматическим альдегидом, не содержащим гидроксильных и карбоксильных групп – *п*-толуальдегидом. В качестве катализаторов были выбраны 4-нитрофенол (рК_в 7.15), кислотность которого близка к кислотности 4-гидроксибензальдегида (рК_в 7.62), и бензойная кислота (рК_в 4.20). В результате в обоих случаях под действием микроволнового излучения наблюдалось протекание реакции, и был выделен целевой 2-(4-метилстирил)хинолин 27 с выходами 36% при использовании 4-нитрофенола и 45% в случае бензойной кислоты (схема 8).

Cxeva 8

Таким образом, было показано, что реакция конденсации хинальдина и его производных с ароматическими альдегидами под действием микроволнового излучения катализируется различными фенолами и карбоновыми кислотами. При этом были реализованы два варианта, когда соединение с гидроксильной или карбоксильной группой является одновременно и альдегидной компонентой реакции, а также когда соответствующий фенол и карбоновая кислота служат внешним катализатором реакции конденсации.

3.1.2. Синтез производных 4-стирилхинолина

Синтез производных 4СХ осуществлялся различными способами (схема 9, табл. 4). Как и в случае 2СХ, использование микроволнового излучения давало значительный выигрыш во времени проведения эксперимента и приводило к увеличению выходов целевых продуктов по сравнению с обычными конденсациями в уксусном ангидриде.

A: PhCOCI/DMF, 150 °C, 5 ч

B: Ac₂O, 140 °C, 14 ч

C: ZnCl₂, MWI, 90-100 °C, 6-10 мин

D: DMF, MWI, 130-170 °C, 10 мин

Таблица 4. Синтез производных 4СХ различными методами.

1 40.111	таолица ч. синтез производных чем различными методами.						
Соедине- ние	R	X	Y	Z	Метод	Время реакции, мин	Выход, %
28	Н	NO_2	Н	Н	A, C	300 (A), 6 (C)	62 (A), 69 (C)
29	Н	Н	Н	Н	В	840	40
30	Н	F	Н	Н	B, C	840 (B), 10 (C)	38 (B), 58 (C)
31	Н	Cl	Н	Н	В	840	43
32	Н	OC ₂ H ₅	Н	Н	В	840	30
33	Н	N(CH ₃) ₂	Н	Н	B, C	840 (B), 10 (C)	45 (B), 60 (C)
34	Н	Н		C ₆ H ₄	В	840	33
35	Н	C ₆ H₄		Н	В	840	36
36	Н	OH	Н	Н	C, D	10 (C), 10 (D)	61 (C), 43 (D)
. 37	Н	Н	Н	OH	С	10	66
38	CH ₃	NO ₂	Н	Н		6	70
39	Н	COOH	Н	Н	D	10	62

4-Гидрокси- и 4-карбоксипроизводные 4СХ (соединения 36 и 39) могут быть получены по реакции конденсации лепидина с соответствующими альдегидами в DMF без внешнего катализатора при температурах 130-170 °С (метод D).

3.1.3. Синтез производных 1-стирилизохинолина

Конденсации 1-метилизохинолина с ароматическими альдегидами осуществлялись как традиционным способом (кипячение в уксусном ангидриде, метод А), так и под действием микроволнового излучения (методы В, С и D, табл. 5). Было найдено, что 1-метилизохинолин под действием микроволнового излучения также вступает в реакцию конденсации с гидрокси- и карбоксибензальдегидами в отсутствие внешнего катализатора.

Схема 10

Таблица 5. Синтез производных 1-стирилизохинолина различными методами.

Соедине- ние	х	R	Метод	Выход, %	Соедине-	х	R	Метод	Выход, %
40	CH	NO ₂		60	43	N	Н	В	63
41	СН	Cl] A	50	44	CH	ОН	С	65
42	CH	Н]	45	45	CH	СООН	D	41

3.1.4. Синтез 8-стирилхинолина

Синтез 8-стирилхинолина **46** осуществлялся по реакции конденсации 8-метилхинолина с бензальанилином под действием *трет*-бутилата калия и 18-краун-6 в DMF при нагревании реакционной смеси на водяной бане в течение 3 ч (схема 11).

Схема 11

Было обнаружено, что данная реакция легко протекает под действием микроволнового излучения, и практически тот же выход продукта (74%) достигается всего за 10 мин. Во избежание перегрева и выброса реакционной смеси из реакционного сосуда использовался импульсный режим проведения реакции: 1 мин облучения и пауза для охлаждения 30 с.

3.1.5.-3.1.6. Синтез аза-гетероароматических производных 2-стирилантрацена

Производные аза-гетероароматического аналога 2-стирилантрацена (СА) — 2-стирилбензо[g]хинолина (2СБХ) представляют собой диарилэтилены, которые сочетают в своей молекуле фрагменты структур двух соединений — 2-стирилантрацена (2СА) и 2-стирилхинолина (2СХ). В случае сочетания в производных 2СБХ свойств 2СА и 2СХ можно было ожидать, что в нейтральной форме для 2СБХ будет наблюдаться преимущественно реакция цис-транс фотоизомеризации (как для 2СА), а в протонированной — преимущественно реакция транс-цис фотоизомеризации (как для 2СХ), и 2СБХ будет представлять собой протон-управляемый фотопереключатель на основе реакции фотоизомеризации. Для проверки наличия или отсутствия этих свойств в "гибридной" структуре было синтезировано производное 2СБХ — 4-хлор-2-стирилбензо[g]хинолин 48. С целью изучения влияния расстояния между гетероатомом азота и реакционным центром (двойной связью) также было получено другое гетероароматическое производное 2СА — 3-стирилакридин 47.

3.1.5. Синтез 3-стирилакридина

3-Стирилакридин 47 получали тем же методом, что и 8-стирилхинолин (по реакции конденсации 3-метилакридина с бензальанилином в DMF в присутствии *трет*-бутилата калия и 18-краун-6). Исходный 3-метилакридин был синтезирован по стандартной схеме. В качестве стартового соединения была выбрана 2-бром-4-метилбензойная кислота, которая вводилась в реакцию Ульмана с анилином с

образованием N-(фенил)-4-метилантраниловой кислоты. Под действием оксихлорида фосфора с последующим кислотным гидролизом последняя была превращена в 3-метилакридон, который был восстановлен металлическим натрием в изоамиловом спирте до соответствующего акридана. При стоянии на воздухе спиртового раствора этого акридана происходило окисление последнего в 3-метилакридин (схема 12).

Cxema 12

H₃C

COOH

C

Конденсацию 3-метилакридина с бензальанилином под действием *трет*-бутилата калия в присутствии краун-эфира можно осуществить и под действием микроволнового излучения. Реакция проводилась в тех же условиях, что и в случае 8-стирилхинолина. Выход целевого продукта 47 при общем времени микроволнового облучения 13 мин составил 71%. Таким образом, было показано, что конденсация метилгетероциклов, имеющих неактивированную метильную группу, с бензальанилином существенно ускоряется под действием микроволнового излучения.

3.1.6. Синтез 4-хлор-2-стирилбензо[д]хинолина

В качестве исходного соединения для синтеза 4-хлор-2-стирилбензо[g]хинолина использовалась коммерчески доступная 3-амино-2-нафтойная кислота, которая вводилась в реакцию этерификации с этанолом, ацилирование полученного этил-3-аминонафтоата уксусным ангидридом приводило к образованию этилового эфира 3-ацетамидо-2-нафтойной кислоты. В результате циклизации двух молекул последнего под действием оксихлорида фосфора был получен сложный амид, содержащий в своей структуре бензохинолиновый фрагмент. Этот амид подвергался кислотному расщеплению и одновременному декарбоксилированию, продуктами этих процессов оказались 4-гидрокси-2-метилбензо[g]хинолин и 3-амино-2-нафтойная кислота. Далее проводилось замещение гидроксильной группы на хлор путем нагревания 4-гидрокси-2-метилбензо[g]хинолина с оксихлоридом фосфора. На последней стадии проводилась конденсация 4-хлор-2-метилбензо[g]хинолина с бензальдегидом под действием микроволнового излучения при использовании в качестве катализатора хлорида цинка. Таким образом, путем шестистадийного синтеза был получен 4-хлор-2-стирилбензо[g]хинолин 48 (схема 13).

Cxessa 13

3.2. Фотохимические свойства аза-гетероароматических диарилэтиленов

Далее были исследованы фотохимические свойства синтезированных соединений. Часть производных 2СХ и 4СХ исследованы совместно с коллегами по лаборатории и описаны в совместных публикациях. Ниже обсуждаются фотохимические свойства соединений, которые исследованы лично автором.

3.2.1. Фотоизомеризация гидроксипроизводных 2-стирилхинолина

Гидроксистирилхинолины 14 и 15 вступали в реакцию транс-цис фотоизомеризации как в нейтральной, так и протонированной формах, квантовые выходы прямой и обратной реакций фотоизомеризации приведены в табл. 6.

Тяблиця 6. Квантовые выходы реакции транс-цис (ϕ_{tc}) и цис-транс (ϕ_{ct}) фотоизомеризации гидроксистирилхинолинов 14 и 15 (этанол-вода 1:1, ошибка \pm 20 %).

Соединение	φις	φct
14	0.17	0.36
14·HCl	0.024	0.40
15	0.53	0.41
15·HCl	0.088	0.59

По сравнению с *пара*-производным **15**, для *орто*-производного **14** ϕ_{tc} оказался в 2.5 раза меньше, что может быть связано с наличием в *транс*-изомере **14** внутримолекулярной водородной связи (ВМВС) между атомом кислорода и водорода в этиленовой группе (схема **14**), что затрудняет транс-цис изомеризацию.

Cxema 14

В *цис*-изомере, вследствие "скрученной" конформации, бензольное кольцо выходит из плоскости этиленовой группы, что препятствует образованию ВМВС, поэтому квантовый выход цис-транс фотоизомеризации не зависит от положения заместителя.

Было обнаружено, что *цис*-изомер 15 оказался термически нестабилен в водноспиртовом растворе и медленно превращался в *транс*-изомер с константой скорости $4.1\cdot10^{-5}$ с⁻¹ (при 22 °C), что соответствует периоду полупревращения около 5 ч. Очевидно, реакция идет через хиноидный таутомер, небольшая доля которого находится в растворе, и в котором энергетический барьер реакции изомеризации в S_0 -состоянии существенно снижается.

Cxeva 15

По-видимому, с образованием хиноидных таутомеров связано также уменьшение квантовых выходов транс-цис фотоизомеризации для протонированных форм 14·HCl и 15·HCl, табл. 6. Катион гидроксистирилхинолиния является, фактически, протонированным мероцианиновым красителем, депротонирование которого по гидроксильной группе приводит к образованию бетаина – резонансной формы

хиноидного таутомера, как показано на схеме 16 на примере соединения 15·HCl. В пользу предположения о возможной конкуренции реакции депротонирования и изомеризации в гидроксистирилхинолинах служит тот факт, что в 2-(4-этоксистирил)хинолине 6, где реакция депротонирования блокируется, в протонированной форме сохраняется высокий квантовый выход транс-цис фотоизомеризации.

Cxessa 16

3.2.2. Фотоизомеризация изомерных нафтилхинолилэтиленов

С целью изучения влияния аннелирования бензольного кольца в 2СХ на реакцию фотоизомеризации были исследованы фотохимические свойства изомерных нафтилхинолилэтиленов 1N2Q 7 и 2N2Q 8. Оба эти соединения вступали в реакцию транс-цис фотоизомеризации как в нейтральной, так и в протонированной формах. Рассчитанные квантовые выходы реакций транс-цис и цис-транс фотоизомеризации приведены в табл. 7.

Таблица 7. Квантовые выходы транс-цис (ϕ_{tc}) и цис-транс (ϕ_{ct}) фотоизомеризации 1N2Q и 2N2Q в разных формах (этанол, ощибка \pm 20 %).

Соединение	φις	φ _{ct}	φις/φει
IN2Q	0.54	0.61	0.89
IN2Q HCI	0.56	0.59	0.95
2N2Q	0.39	0.54	0.71
2N2Q HCl	0.32	0.84	0.38

Из полученных данных видно, отр квантовые выхолы транс-цис фотоизомеризации ф в нейтральной и протонированной формах равны ~ 0.55 для 1N2Q и 0.3 - 0.4 для 2N2Q и при переходе от одной формы к другой в пределах ошибки измерений практически не меняются, в отличие от 2СХ, когда при переходе от нейтральной к протонированной форме происходит значительное увеличение φιс. потеря эффекта увеличения Предположительно, при ϕ_{tc} нафтилхинолилэтиленов связана с увеличением размера л-системы от 18 электронов для 2-стирилхинолина до 22 электронов для нафтилхинолилэтиленов.

3.2.3. Фотохимические свойства аза-гетероароматических производных 2стирилантрацена

Сильный эффект увеличения размера π -системы проявляется при переходе к азагетероароматическим производным 2-стирилантрацена (2CA). Было показано, что 3-стирилакридин 47 и 4-хлор-2-стирилбензо[g]хинолин 48 фотохимически стабильны как в нейтральной, так и в протонированной формах и проявляют свойства своего гомоароматического аналога — 2CA, для которого характерна "односторонняя" цистранс фотоизомеризация, а транс-цис фотоизомеризация не идет. Для соединения 48, которое одновременно является производным 2CA и 2CX, из двух предполагаемых свойств — односторонней реакции цис-транс фотоизомеризации в нейтральной форме, характерной для 2CA, и увеличения квантового выхода транс-цис фотоизомеризации в протонированной форме, характерного для 2CX, проявляется только первое свойство.

3.2.4. Фотоциклизация производных 4-стирилхинолина с образованием 3-замещенных бензо[і]фенантридинов

В рамках данной работы был осуществлен препаративный фотолиз 4-хлор- и 4нитропроизводных 4СХ (соединения 31 и 38 соответственно, схема 17). Конечные продукты фотоциклизации этих соединений – 3-замещенные бензо[і]фенантридины (31а и 38а) были выделены из реакционной смеси методом ТСХ и охарактеризованы методами спектроскопии ЯМР ¹Н, масс-спектрометрии высокого разрешения и УФвидимой спектроскопии. Производные 4СХ, содержащие в *пара*-положении бензольного кольца электронодонорные заместители, например ОС₂Н₅ (соединение 32) или N(CH₃)₂ (соединение 33) подвергались обратимой реакции транс-цис фотоизомеризации, однако не вступали в реакцию фотоциклизации.

Cxessa 17

3.2.5. Адиабатическая транс-цис фотоизомеризация и фотоциклизация 8-стирилхинолина

Протекающие при облучении 8-*mpaнс*-стирилхинолина **46** реакции могут быть описаны следующей схемой:

Cxeva 18

Спектральные изменения при фотолизе раствора *транс*-8СХ в гексане приведены на рис. 1: наблюдалось падение полосы в области максимума поглощения *транс*-изомера и отчетливо проявились полосы поглощения первичного продукта фотоциклизации – DHNQ (в области 450 нм) и конечного продукта циклизации – нафтохинолина NQ (в области 270 нм, спектр 8). Последнее соединениие описано в литературе и имеет характерный спектр поглощения: интенсивную полосу в области 270 нм и набор колебательно-разрешенных полос в области 300 – 400 нм, спектр 9 на рис. 1.

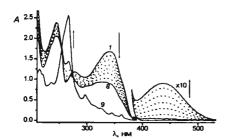


Рис. 1. Спектральные изменения при облучении воздушно-насышенного раствора 8-транс-стирилхинолина (9.64·10⁻⁵ M) в гексане светом с длиной волны 313 нм, интенсивность $3.5\cdot10^{-10}$ Эйнштейн см- 2 с⁻¹, время фотолиза (с): 0 (1), 160 (2), 320 (3), 520 (4), 700 (5), 900 (6), 1200 (7), 1500 (8); спектр (9) — после облучения реакционной смеси в течение 30 мин, выдерживания в темноте и разбавления.

Фотоциклизация – конкурентная реакция по отношению к фотоизомеризации, однако по кинетике фотоциклизации можно судить о механизме реакции фотоизомеризации – диабатическом или адиабатическом. Метод основан на том факте, что фотоциклизация диарилэтиленов происходит в синглетно-возбужденном иис-изомере. Поэтому образование DHNQ является, фактически, тестом на присутствие в реакционной смеси возбужденного иис-изомера. Был исследован начальный участок кинетической кривой накопления DHNQ, при этом оказалось, что экспериментальные точки лучше всего аппроксимируются с учетом как одноквантового, так и двухквантового пути образования DHNQ, рис. 2.

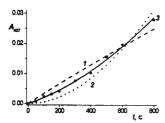


Рис. 2. Кинетика изменения оптической плотности на длине волны 437 при облучении воздушнонасыщенного раствора 8-*пранс*-стирилхинолина в гексане светом с длиной волны 313 нм. Даны экспериментальные точки и аппроксимирующие кривые, рассчитанные с учетом только одноквантового пути (1), только двухквантового пути (2), обоих путей образования DHNQ (3).

Одноквантовый путь образования DHNQ из *транс*-изомера предполагает, что возбужденный *транс*-изомер по адиабатическому пути дает возбужденный *цис*-изомер, который далее циклизуется. Двухквантовый путь образования DHNQ при возбуждении *транс*-изомера 8СХ свидетельствует о промежуточном участии *цис*-изомера в основном состоянии, образующегося по диабатическому механизму, для циклизации которого необходимо поглощение второго кванта света.

Таким образом, было установлено, что реакция mpanc-quc фотоизомеризации 8CX, по крайией мере, частично, идет по адиабатическому пути, т.к. наличие прямой циклизации mpanc-8CX \rightarrow DHNQ свидетельствует о промежуточном участии возбужденного quc-изомера, который образуется по адиабатической реакции из возбужденного mpanc-изомера.

3.2.6. Протон-управляемая фотоизомеризация 1-(2-пиридил)-2(2-хинолил)этилена

Внутримолекулярная водородная связь (ВМВС) может оказывать существенное влияние на реакцию фотоизомеризации диарилэтиленов. В дигетарилэтиленах с двумя шестичленными аза-гетероциклами образование ВМВС возможно в монопротонированной форме. В таком случае протонирование можно использовать

для управления реакцией фотоизомеризации, что представляет интерес с точки зрения создания и исследования принципов действия МЛУ.

На схеме 19 приведены фотохимические и кислотно-основные равновесия для 1-(2-пиридил)-2-(2-хинолил)этилена 10 (2P2Q).

Cxeya 19

В монопротонированной форме II возможно образование двух таутомеров, IIа и IIb, которые различаются местом локализации протона: в IIа это хинолиновый, в IIb – пиридиновый атом азота. Однако независимо от места локализации протона, в *цис*изомере имеются предпосылки для образования ВМВС. Проведенные квантовохимические расчеты методом ВЗLYP/6-31G* показали значительную стабилизацию *цис*-изомера в монопротонированной форме для двух таутомеров IIa и IIb по сравнению с соответствующими формами *транс*-изомера (см. табл. 8), в то время как для остальных форм (нейтральной I и дипротонированной III) наблюдалась обычная картина для соотношения стабильностей: *транс*-изомеры значительно стабильнее *цис*-изомеров.

Таблица 8. Стабильность ($E_{\rm rel}$, рассчитана как разность полных энергий) *цис*-изомеров 1-(2-пиридил)-2-(2-хинолил)этилена относительно соответствующих *транс*-изомеров в нейтральной и протонированной формах (расчет методом B3LYP/6-31G*, катионы рассчитаны без противоионов).

Форма	E _{rel} , ккал/моль
1	10.40
IIa	-8.71
ПР	-10.90
	11.60

По сравнению с нейтральной формой 2P2Q, суммарный эффект стабилизации иис-изомера монопротонированной формы достигает более 20 ккал/моль, что можно связать, во-первых, с отсутствием стерических взаимодействий в плоской структуре, во-вторых, с образованием BMBC. Как показало экспериментальное исследование, эффект протонирования и образования BMBC действительно проявляется и в фотохимических, и в спектральных свойствах 2P2Q.

Ha рис. показаны спектральные изменения при облучении монопротонированной соли транс-изомера 1-(2-пиридил)-2-(2-хинолил)этилена. Обращает на себя внимание спектр монопротонированного иис-изомера, который имеет три структурированные полосы поглощения, причем длинноволновая полоса едвинута не гипсохромно, а батохромно относительно транс-изомера и имеет сравнительно высокую интенсивность (рис. 3, спектр 6). Такие особенности спектра нис-изомера монопротонированного 2P2O можно плоской

квазициклической структурой последнего, стабилизированной образованием ВМВС с участием атомов азота двух гетероциклов (схема 19). Отметим также, что наличие структурированных полос поглощения характерно для жестких циклических конденсированных структур.

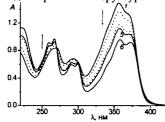


Рис. 3. Спектральные изменения при облучении воздушно-насыщенного раствора монопротонированной соли *транс*-изомера 1-(2-пиридил)-2-(2-хинолил)этилена (3.93· 10^{-5} М) в ацетонитриле светом с длиной волны 365 нм, интенсивность 9.7· 10^{-10} Эйнштейн см⁻² с⁻¹, время фотолиза (с): 0 (1), 30 (2), 60 (3), 120 (4), 1000 с (5), спектр (5) соответствует ΦC_{365} ; (6) — спектр μuc -изомера, рассчитанный по метолу Φ ишера.

Анализ полученных квантовых выходов реакций транс-цис и цис-трансфотоизомеризации 2P2Q в различных формах (табл. 9) показал, что в монопротонированной форме происходит увеличение квантового выхода ϕ_{tc} более чем на порядок. При образовании дипротонированной формы 2P2Q квантовые выходы фотоизомеризации снова уменьшаются практически до исходных значений для нейтральной формы, что можно объяснить разрушением BMBC при введении второго протона.

Таблица 9. Квантовые выходы транс-цис (ϕ_{tc}) и цис-транс (ϕ_{cl}) фотоизомеризации 2P2Q в разной форме (ацетонитрил, ошибка \pm 20 %).

Соединение	Ψtc	φα	ϕ_{tc}/ϕ_{ct}
2P2Q	0.033	0.082	0.40
2P2Q HCl	0.42	0.19	2.17
2P2Q 2HCl	0.027	0.041	0.67

При проведении фотолиза нейтральной формы 2P2Q в этаноле наблюдались побочные реакции фотоприсоединения этанола к двойной связи и ее фотовосстановления (схема 20). Масс-спектральные исследования реакционной смеси методом MALDI показали, что продукты фотоприсоединения оказались основными компонентами смеси: в масс-спектре фотолизата соотношение пиков исходного 2P2Q с $m/z = 233 \, (M+1)^+$, продукта фотовосстановления с $m/z = 235 \, (M+1+2)^+$ и продуктов фотоприсоединения этанола с $m/z = 279 \, (M+1+46)^+$ составило $\sim 7:5:130$.

Cxeva 20

3.2.7. Молекулярные логические устройства на основе 1-(2-пиридил)-2(2-хинолил)этилена

Рассмотрим, каким образом с помощью 2P2Q можно осуществлять логические операции, в которых 2P2Q играет роль молекулярного логического устройства (МЛУ).

Логическое устройство (ЛУ) представляет собой переключатель, в котором значение выходного (output) сигнала, "0" или "1", зависит от входного (input) сигнала, также принимающего значения "0" или "1". Двухадресное ЛУ, имеющее два входа и

один выход, может находиться в четырех состояниях, соответствующих четырем комбинациям входных сигналов: (0,0), (0,1), (1,0) и (1,1). Значение выходного сигнала (0 или 1) в каждом конкретном случае зависит от типа ЛУ и описывается таблицей состояний (таблицей истинности), в которой каждой комбинации входных сигналов (логических переменных) ставится в соответствие требуемое значение выходного сигнала (данной логической функции). Ниже приведены таблицы истинности некоторых логических функций.

Таблица 10. Таблицы состояний (истинности) различных логических функций

вход (input)		выход (output)	
inl	in2	AND	INH	OR
0	00	0	0	0
l	0	0	1	l
0	ı	0	0	ı
l	1	1	0	1

Если принять в качестве исходного состояния МЛУ (0,0) *цис*-изомер, а в качестве воздействий (входных сигналов) – облучение светом (in1) и добавление кислоты (in2), то разные состояния МЛУ после соответствующего воздействия будут соотноситься с разными формами 2Р2Q так, как это показано в табл. 11. Подача сигнала только на вход 1 приведет к состоянию МЛУ (1,0), соответствующему *транс*-изомеру. Подача сигнала только на вход 2 приведет к состоянию МЛУ (0,1), соответствующему протонированному *прис*-изомеру. Подача сигнала на оба входа приведет к состоянию МЛУ (1,1), соответствующему протонированному *транс*-изомеру.

Таблица 11. Соотношение между воздействием на молекулярное логическое устройство (МЛУ) и его состоянием и формой 2P2Q, соответствующей этому состоянию, при использовании иис-изомера в качестве исходной формы.

Воздействие	Состояние МЛУ	Соединение
•	0,0	cis-2P2Q
hv	1,0	trans-2P2Q
HCl	0,1	cis-2P2Q'HCl
hv + HCl	1,1	trans-2P2Q'HCl

Следует отметить, что реально невозможно получить "чистые" состояния МЛУ, соответствующие конкретным соединениям, приведенным в табл. 11, поскольку из-за обратимости реакции фотоизомеризации при облучении светом невозможно полностью перевести *цис-* в *транс-*изомер и обратно. В реальных условиях под действием света достигается фотостационарное состояние ΦC_{λ} , состоящее из смеси *цис-* и *транс-*изомеров, относительное содержание которых зависит от длины волны облучения λ .

На рис. 4 показаны спектры реакционных смесей в четырех фотостационарных состояниях, достигаемых при облучении светом с длиной волны 313 и 365 нм растворов нейтрального 2P2Q и его гидрохлорида. Приняв в качестве исходного состояния МЛУ фотостационарное состояние ΦC_{365} (обогащенное ηuc -изомером, спектр I), а в качестве входных сигналов – облучение на длине волны 313 нм и протонирование (прибавление HCl), получаем полностью обратимую систему, которая после нейтрализации и облучения светом 365 нм возвращается в исходное состояние.

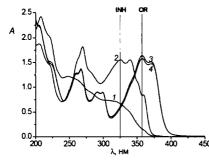


Рис. 4. Спектры поглощения реакционных смесей 2Р2Q в фотостационарных состояниях (СН $_3$ СN, 5.75 $^{-5}$ М) в нейтральной (1,2) и протонированной (3,4) формах (гидрохлорид), ΦC_{365} (1,3) и ΦC_{313} (2,4). Вертикальными линиями показаны длины волн 325 и 358 нм, считывание оптической плотности на которых позволяет получить соответствующее МЛУ.

На рис. 4 вертикальными линиями показаны длины волн 325 и 358 нм, считывание сигнала на которых позволяет получить два различных МЛУ – "ЗАПРЕТ" ("INH", 325 нм) и "ИЛИ" ("OR", 358 нм). Составим таблицу состояний для этих МЛУ.

Поскольку в данном случае выходным сигналом является оптическая плотность, для каждого МЛУ необходимо установить пороговое значение, при значении оптической плотности ниже и выше которого выходной сигнал будет иметь значение "0" и "1", соответственно. В табл. 12 для всех четырех комбинаций входных сигналов приведены соответствующие им фотостационарные состояния 2P2Q и даны экспериментальные значения оптических плотностей на двух указанных длинах волн — A_{325} и A_{358} , а также пороговые значения, превышение которых соответствует наличию сигнала "1" на выходе МЛУ.

Таблица 12. Таблица состояний молекулярных логических устройств на основе фотостационарных состояний (ФС) 2Р2Q; приведены пороговые и экспериментальные значения оптических плотностей на указанных длинах волн и соответствующие значения выходных сигналов.

вход (input)			выход (output)	
in l	in2	ФС	ΙΝΗ "3ΑΠΡΕΤ"	OR "ИЛИ"
hv 313	HCl		A ₃₂₅ (0.9)	$A_{358}(0.3)$
0	0	ФС365	0 (0.68)	0 (0.15)
l	0	ФС313	1 (1.56)	1 (0.85)
0	1	ФС365-НС1	0 (0.62)	1 (1.64)
l	1	ФС313-НС1	0 (0.58)	1 (1.58)

Например, при считывании сигнала на длине волны 325 нм в качестве порогового значения оптической плотности следует принять $A_{325}=0.9$. Тогда при $A_{325}<0.9$ выходной сигнал будет иметь значение "0", а при $A_{325}>0.9$ – значение "1". Как следует из табл. 12, при этом условии значение "output = 1" достигается только при "input1 = 1", "input2 = 0" (состояние ΦC_{313}), т.е. система работает как логическое устройство "ЗАПРЕТ" (табл. 10). Это наглядно видно на рис. 5, где значения оптических плотностей на указанных длинах волн показаны в виде диаграммы, а пороговые значения для разных логических устройств отмечены горизонтальными линиями. На длине волны 325 нм (рис. 5а) только оптическая плотность в состоянии ΦC_{313} выше пороговой линии. Для длины волны 358 нм (рис. 56) пороговым значением является $A_{358}=0.3$, в этом случае оптическая плотность выше пороговой линии для состояний ΦC_{313} , ΦC_{365} ·HCl и ΦC_{313} ·HCl, т.е. система работает как логическое устройство "ИЛИ" (табл. 10).

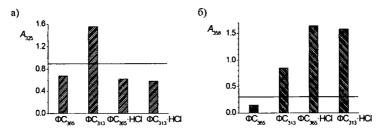


Рис. 5. Диаграмма оптических плотностей реакционных смесей в фотостационарных состояниях ΦC_{365} и ΦC_{313} 2P2Q в нейтральной и протонированной формах (гидрохлорид) на длинах волн: а) 325 нм, 6) 358 нм; горизонтальными линиями показаны пороговые значения оптических плотностей для разных логических устройств: а) "ЗАПРЕТ" ("INH"), 6) "ИЛИ" ("OR").

Таким образом, показано, что, используя 2P2Q, можно построить молекулярные логические устройства, для которых входными сигналами являются облучение светом и протонирование, а тип действия — "ЗАПРЕТ" ("INH"), "ИЛИ" ("OR") зависит от ллины волны считывающего света.

выводы

- 1. Разработан быстрый, эффективный и экологически безопасный метод синтеза производных 2- и 4-стирилхинолинов и 1-стирилизохинолина с использованием микроволнового излучения и хлорида цинка в отсутствие растворителя.
- 2. Впервые показано, что конденсация гидрокси- и карбоксибензальдегидов с различными метилхинолинами под действием микроволнового излучения протекает без добавления внешнего катализатора, в роли которого в данном случае выступает соответствующий ароматический альдегид. Предложенный подход позволяет использовать каталитические возможности незащищенных гидроксильных и карбоксильных групп для получения гидрокси и карбоксистирилхинолинов в одну стадию.
- 3. Найдено, что конденсации метилгетероциклов, имеющих неактивированную метильную группу, с бензальанилином под действием *трет*-бутилата калия и краунэфира в N,N-диметилформамиде легко протекают под действием микроволнового излучения, что позволяет сократить время протекания реакций по сравнению с традиционным подходом с 3-4 ч до 10-15 мин.
- 4. Показано, что аннелирование бензольного кольца в 2-стирилхинолине приводит к потере эффекта увеличения квантового выхода транс-цис фотоизомеризации в протонированной форме, а при аннелировании хинолинового кольца, приводящем к аза-гетероароматическим производным 2-стирилантрацена, происходит потеря фотохимической активности соответствующего *трансстирилазаантрацена*.
- 5. Впервые показано, что фотоциклизация 8-*mpanc*-стирилхинолина протекает как по двухквантовому, так и по одноквантового пути, что свидетельствует о том, что транс-цис фотоизомеризация этого соединения, по крайней мере, частично происходит по адиабатическому механизму, когда из возбужденного *mpanc*-изомера получается *цис*-изомер также в возбужденном состоянии.

- 6. Впервые показано, что для 1-(2-пиридил)-2-(2-хинолил)этилена наблюдается эффект протон-управляемой фотоизомеризации. Эффект, по-видимому, обусловлен образованием внутримолекулярной водородной связи, которая проявляется также в спектре поглощения монопротонированной формы *цис*-изомера.
- 7. Показано, что, используя 1-(2-пиридил)-2-(2-хинолил)этилен, можно построить молекулярные логические устройства, для которых входными сигналами являются облучение светом и протонирование, а тип действия "ЗАПРЕТ" ("INH"), "ИЛИ" ("OR") зависит от длины волны считывающего света.

Основные результаты диссертации изложены в следующих публикациях:

- 1. Ли В. М., Гавришова Т. Н., Будыка М. Ф. Эффективный метод синтеза 4стирилхинолинов с использованием микроволнового излучения // Химия гетероциклических соединений, 2009, № 10, С. 1589-1590.
- 2. Будыка М. Ф., Поташова Н. И., Гавришова Т. Н., Ли В. М. Фотоизомеризация и фотоциклизация производных 4-стирилхинолина // Химия высоких энергий, 2009, Т. 43, № 5, С. 424-430.
- 3. Будыка М. Ф., Поташова Н. И., Гавришова Т. Н., Ли В. М. Влияние заместителей в стирильном фрагменте на фотоциклизацию производных 4-стирилхинолина // Химия высоких энергий, 2010, Т. 44, № 5, С. 436-443.
- 4. Будыка М. Ф., Ли В. М., Поташова Н. И., Гавришова Т. Н. Адиабатическая транс-цис фотоизомеризация и фотоциклизация 8-стирилхинолина // Химия высоких энергий, 2010, Т. 44, № 5, С. 444-449.
- 5. Будыка М. Ф., Ли В. М., Поташова Н. И., Гавришова Т. Н. Протон-управляемая фотоизомеризация 1-(2-пиридил)-2-(2-хинолил)этилена // Химия высоких энергий, 2011, Т. 45, № 2, С. 144-151.
- 6. Ли В. М., Гавришова Т. Н., Будыка М. Ф. Синтез производных стирилхинолинов // Конференция "Молодая наука в классическом университете", Иваново, 21-25 апреля 2008 г., Тезисы докладов, С. 65-66.
- Ли В. М., Будыка М. Ф., Поташова Н. И., Гавришова Т. Н. Синтез и фотохимические свойства производных 4-стирилхинолина // XI Молодежная научная школа-конференция по органической химии, Екатеринбург, 23-29 ноября 2008, Тезисы докладов, С-072.
- Ли В. М., Поташова Н. И. Синтез и фотохимические свойства стирилхинолинов // Материалы XVI международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов - 2009", Москва, 13-18 апреля 2009, Секция Химия, П50.
- 9. Ли В. М., Гавришова Т. Н., Будыка М. Ф. Синтез нафтил- и пиридилгетарилэтиленов // Конференция "Молодая наука в классическом университете", Иваново, 20-24 апреля 2009 г., Тезисы докладов, С. 56-57.
- Budyka M. F., Potashova N. I., Gavrishova T. N., Lee V. M. Photochemistry and logic operations with styrylquinolines // XXIV International conference on photochemistry ICP2009, Toledo, Spain, 19.07 – 24.07 2009, Book of abstracts, P. 338.
- 11. Т. Н. Гавришова, В. М. Ли, М. Ф. Будыка. Удобный эффективный метод синтеза 4-стирилхинолинов с использованием микроволнового излучения // Всероссийская конференция по органической химии, 25-30 октября 2009, Москва. Сборник тезисов докладов. С. 140.

- Gavrishova T. N., Li V. M., Budyka M. F., Potashova N. I. A Convenient, Effective Synthesis of 4-Styrylquinolines Using Microwave Irradiation // V International Conference Chemistry of Nitrogen Containing Heterocycles CNCH-2009, 5-9 October, 2009, Kharkov, Ukraine, Book of Abstracts, P-48.
- Ли В. М., Гавришова Т. Н., Будыка М. Ф. Эффективный метод синтеза 2- и 4стирилхинолинов с использованием микроволнового излучения // XII Молодежная конференция по органической химии, Суздаль, 7-11 декабря 2009, С. 294-296.
- 14. Ли В. М. Эффективный метод синтеза гетероароматических производных диарилэтиленов // Материалы XVII международной научной конференции студентов, аспирантов и молодых ученых "Ломоносов 2010", Москва, 12-15 апреля 2010, Секция Химия.
- 15. Ли В. М., Гавришова Т. Н. Эффективный метод синтеза пиридилгетарилэтенов // Конференция "Молодая наука в классическом университете", Иваново, 20-30 апреля 2010 г., Тезисы докладов, С. 76.
- Budyka M. F., Potashova N. I., Gavrishova T. N., Li V. M. Competing photoisomerization and photoinduced proton transfer in hydroxystyrylquinolines: experimental and theoretical study // XXIII IUPAC Symposium on Photochemistry, July 11-16, 2010 Ferrara, Italy, Abstracts, P. 162.
- 17. Budyka M. F., Li V. M., Potashova N. I., Gavrishova T. N. Adiabatic trans-to-cis photoisomerization and photocyclization of styrylquinolines // XXIII IUPAC Symposium on Photochemistry, July 11-16, 2010, Ferrara, Italy, Abstracts, P. 163.
- Будыка М. Ф., Поташова Н. И., Гавришова Т. Н., Ли В. М. Экспериментальное и теоретическое исследование фотохимических свойств гидроксипроизводных 2-стирилхинолина // XXII Симпозиум "Современная химическая физика", Туапсе, 24 сентября 5 октября 2010.
- Гавришова Т. Н., Ли В. М., Горьков К. В., Будыка М. Ф. Синтез производных стирилхинолина, стирилбипиридила и стирилфенантролина с использованием микроволнового излучения // III Международная конференция "Химия гетероциклических соединений", Москва, 18-21 октября 2010 г., Сборник тезисов, У16.
- 20. Гавришова Т. Н., Ли В. М., Будыка М. Ф., Поташова Н. И. Удобный метод синтеза 4-гидроксистирилхинолинов с использованием микроволнового излучения // III Международная конференция "Химия гетероциклических соединений", Москва, 18-21 октября 2010 г., Сборник тезисов, С51.
- 21. Ли В. М., Гавришова Т. Н., Будыка М. Ф. Синтез гетероароматических производных 2-стирилантрацена // III Международная конференция "Химия гетероциклических соединений", Москва, 18-21 октября 2010 г., Сборник тезисов, С126.
- 22. Поташова Н. И., Ли В. М., Гавришова Т. Н., Будыка М. Ф. Фотоциклизация 8-стирилхинолина в 4-азахризен // III Международная конференция "Химия гетероциклических соединений", Москва, 18-21 октября 2010 г., Сборник тезисов, С165.

Для заметок

Для заметок

