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Abstract 

 

The results of analysis and numerical simulation of evolution and interaction of the 

N-vortex structures of various configuration and different vorticities in the continu-

um including atmosphere, hydrosphere and plasma are presented. It is found that in 

dependence on initial conditions the regimes of weak interaction with quasi-

stationary evolution and active interaction with the "phase intermixing", when the 

evolution can lead to formation of complex forms of vorticity regions, are realized 

in the N-vortex systems. For the 2-vortex interaction the generalized critical param-

eter determining qualitative character of interaction of vortices is introduced. It is 

shown that for given initial conditions its value divides modes of active interaction 

and quasi-stationary evolution. The results of simulation of evolution and interac-

tion of the two-dimensional and three-dimensional vortex structures, including such 

phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and 

tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a 

type of “hydrodynamic vortex – dust particles” are presented. The applications of 

undertaken approach to the problems of such plasma systems as streams of charged 

particles in a uniform magnetic field B and plasma clouds in the ionosphere are 

considered. It is shown that the results obtained have obvious applications in stud-

ies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere 

and plasma. 

Keywords: vortices; interaction; fluids; atmosphere; cyclonic vortices; tornado; 
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1. Introduction. Basic equations 

 
In this paper we study numerically the interaction of the vortex structures [so-

called FAVRs, see (Zabusky et al., 1979)] in the continuum, and, specifically, in 

fluids (such as atmosphere and hydrosphere) and plasmas in two-dimensional (2D) 

approximation, when the Euler-type equations are applicable. The Euler equation 

for the inviscid incompressible fluid p
t
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Add here the equation of continuity: 
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where for ideal incompressible fluid 0d/d  t  and, hence,  
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Introduce further the flow function 

  sdsinu  

where u is a fluid velocity, s is a displacement,  is an angle between u and s 

(function  is positive when the streamlines are directed clockwise). It is easy to 

show, that 
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is the vector of vortex, and for flat motion 
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is a vorticity. 

Now present the Euler equations in new variables  vorticity and flow function, 

making differentiation the equations in (1) on y and x accordingly. Then, in absence 

of external forces, after elementary transformations we obtain: 
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As, according to Eq. (2) for a flat motion 0
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Equation (6) in variables “vorticity  the flow function” is the equation of carry of 

a vortex and is nonlinear, as u and v are the functions of . Last two terms in (6) are 

convective ones, and the convection in this case means that the vortex is carried on 

a current. 

With due account of (3) we can rewrite (4) in form 
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is the Poisson equation for flow function 
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Thus, the dynamics of vortical structures in their flat movement for the case of an 

inviscid incompressible fluid is described by the set of equations of carry of a vor-

tex (6) and the Poisson equation (7) for flow function. 

Simple model of 2D magnetized plasma (Taylor and McNamara, 1971) is the qua-

si-particles (or the charged filaments aligned in a uniform magnetic field B) which 

move with the central-directed velocity 2/ BBE  . The equations of motion of 

these quasi-particles (filaments) have form 
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where ie  is the charge per unit length of the filament and 

  )(ln jijieeH rr                                    (9) 

is the Hamiltonian which has the sense of energy of Coulomb interaction. 

In a continuous limit this 2D plasma satisfies to the equations: 
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2
,                                                    (11) 

where  is the charge density, ),( yx vvv ,   is the potential of an electric field 

and )/,/( yx  . Independently on the scale of coefficient B these continu-

ous equations are formally identical to the equations for the 2D movement of an 

inviscid incompressible fluid (6), (7) where  is the z-component of vorticity , and 

 is the flow function. If the vorticity is presented by discrete vortexes (with circu-

lations ie ) then the motion of a fluid is described by the Hamilton equations with 

B=1.Note, that the equations of motion of clouds of ideal ionospheric plasma have 

a similar form. 

Another 2D continuous models can be represent by vortexes or the filaments (qua-

si-particles) with the Coulomb interaction (Taylor, 1977) and include the Debye 

radius of shielding in the Poisson equation (11). At this, it is necessary proposed 
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that the ions move with the guiding-centre velocity, and electrons (for example, 

moving along a field B ) have the Boltzmann distribution. Then ionic current is 

still described by (10), and the Eq. (11) is rewritten in the form of 

 22 k ,                                             (12) 

where 2k  is the Debye shielding. This model is also presented by charged fila-

ments (quasi-particles) satisfying (8), but, unlike (9), with Hamiltonian  

  )(0 jiji kkeeH rr ,                                      (13) 

which describes the shielded Coulomb interaction between filaments. 

One more model of plasma which can be expressed in the similar form, has been 

introduced in (Hasegawa and Mima, 1978). Its distinctive feature is inclusion of the 

ionic-polarized current through the equation of motion of ions 
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e
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The electrons have also the Boltzmann distribution here but the Debye length is 

supposed tending zero so, that full charging neutrality is conserved. In this case 

1k  is not Debye length, but it is the ion Larmour radius (electron temperature), 

and shielding is an indirect effect of the ion-polarized current. Let us note here that 

in space plasmas, in addition to vortices with dimensions of the order of the ion 

Larmor radius calculated at the electron temperature the vortical structures with 

spatial scales of the order of the Larmor radius calculated at the ion temperature 

can exist (Aburdzhaniya et al., 1984), however “classic” model of  Hasegawa-

Mima (Hasegawa and Mima, 1978) does not take into account them. In this case 

the general structure of the equations is the same, but it is necessary to consider 

1k  as some generalized ion Larmour radius. 

The hydrodynamical model of a rotating fluid (Charney, 1948) describing a motion 

of the Earth atmosphere also corresponds to shielded interaction. Atmospheric cur-

rents in a horizontal plane are described by the equation: 



6 

 

zR
v 

 vhg
td

d
,                                           (15) 

where h is atmospheric depth, and R is the Coriolis force. Small change of h satis-

fies to the equations identical to model of shielded guiding-centre plasma and a role 

of length of shielding plays the Rossby radius, RgH0 . 

There are also some other examples of vortex motion in plasmas and rotating fluids 

which were discussed in detail, for example, in (Mikhailovskii et al., 1984; 

Petviashvili and Pokhotelov, 1992). They also use hydrodynamic description and 

can be reduced to the equations similar to presented above. 

Thus, write a set of equations describing a motion of a fluid, gas or plasma in the 

generalized variables: 
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In dependence on the considering medium the functions and variables in Eqs. (16) 

will have various physical sense (Table 1), and the set (16) will get the form of one 

of described by the Eqs. (6)-(15) ones. 

 

Table 1. Sense of the variables in dependence on type of medium 

Function Fluid, gas Plasma 

B B = 1 module of a vector of a magnetic induction 

 flow function  potential of an electric field  

 
z-component of 

vorticity  
line density of a charge  

f f = 0 

  f = 0      – plasma with Coulomb interaction; 

 2kf   plasma with shielded Coulomb 

interaction 

 

Note that function f  has various sense in dependence on considering model of me-
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dium. So, for an inviscid incompressible fluid and also for charged filaments (qua-

si-particles) with the Coulomb interaction f = 0, for filaments (particles) with the 

shielded Coulomb interaction  2kf . Further we consider only a case when f = 

0, which corresponds to rotation of local vortical structures in a fluid or to evolu-

tion of the charged filaments (quasi-particles) in a homogeneous magnetic field. 

Generalization for  2kf  is rather trivial. 

 

2. Modeling technique 

For numerical simulation we used the contour dynamics (CD) method (Zabusky et 

al., 1979), to some extent modified (see (Belashov and Singatulin, 2003a) for de-

tail). This has yielded us a possibility not only to observe evolution of single vor-

tex, but also to study the interaction between vortices having different sizes, 

vorticities and symmetry orders (different modes), and also to simulate the 3D vor-

tex structures. A general idea of CD method is that the interaction between the 

boundaries of the regions with constant   is considered, and due to this the dimen-

sion of the problem decreases on unit. Analytical solution of the Poisson equation 

(16) with f = 0 for flow function  has form (Belashov and Singatulin, 2003b) 

 


 ),(]ln[dd
2

1
r ,                                    (17) 

where rln  is the Green's function of Eq. (2), and 
2/122 ])()[(  yxr . Then 

a value of velocity can be obtained by differentiation of integral (17), namely: 

                          ]dd][ln[),( 0  

Г

yxryx eeu .                              (18) 

Further, obtain the change of the contour coordinates with time by solving differen-

tial equation yx yxx, y eeu      )(  . For the computer simulation of the vortex struc-

tures the contour's boundary is divided into N lattice points (moreover, the point 

quantity should be rather great), and the temporal evolution is computed for each 
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point. Thus Eq. (18) is written in discrete form using the 3-layer difference scheme 

with approximation order )(O 2 : 
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yx
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  where u and v are the x and y components of the velocity of the 

contour point, respectively. We omit here the details of the CD method and nuanc-

es of its modification for modeling of the FAVR evolution. You can find them in 

(Belashov and Singatulin, 2003a). Equation (19) allows us to found a value of ve-

locity of each point of contour in dependence on influence to it of the points of 

both the same contour and the contour interacted with it. So, one can observe the 

time evolution of the vortex structure setting its initial form. 

 

3. Numerical simulation and discussion 

 

Let us consider the results of numerical simulation in terms of the vortex motion of 

the inviscid incompressible fluid, as more visual and directly applicable to physics 

of the atmosphere and hydrosphere.  

For the first time the CD method has been used for simulation of evolution of 2D 

2-vortex systems of FAVRs in (Zabusky et al., 1979), after that there was a whole 

series of similar studies of different authors in which, however, the problems of 

evolution of more general N-vortex systems and possible modes of vortical interac-

tion depending on their initial configuration were not considered. For the first time 

such studies have been undertaken in (Belashov and Singatulin, 2001). 

In general, to study the evolution of vortex structures with different symmetry or-

ders it is necessary to insert a small amplitude perturbation 

)](cos1[0 tmRr m   (where 0R  is a conditional radius,  is an eccen-
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tricity, m is symmetry order (mode),  is an angle and 2/)1(0  mm ) to the cir-

cle region with constant vorticity. But, taking into account that the results of evolution 

for one and two vortices with different m were described in detail in [7, 9], let us stay 

on results on interaction of FAVRs and consider the most simple cases of circle vor-

tices when m=1 and, therefore, 0m . As it was found in (Belashov and 

Singatulin, 2003d) for such FAVRs the result of the evolution depends on sign of 

vorticity ("polarity" of vortex)  [ =  in Eqs. (16)] and the distance  between 

boundaries of vortices. We fulfilled a number of the series of numerical simulations 

for study of 2-vortex interaction, the interaction in the N-vortex systems, including 

interaction between the hydrodynamical vortex structures and the dust particles in a 

plasma, and also interaction of two 3D plane-rotating vortex structures within the 

framework of many-layer model of medium, in dependence on some parameters: 

initial distance between vortices, value and sign of their  vorticities, and spatial 

configuration of the vortex system. Consider the examples of the basic results.  

 

3.1 Two-vortex interaction  

 

For two circle vortices having opposite polarities we observed that at an initial 

stage they approach and further move in the same direction, rotating in opposite 

directions (Fig. 1). Thus, the vortices practically don't interact independently on 

value of .  

 

Fig. 1. Evolution of two circle vortices with opposite polarities  

( 11   and 12  ) 
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For the circle vortices having the same polarities the result of evolution depends 

essentially on . So, our results show that at interaction of a pair of circle vortices 

some cases can take place: 

1. For rather big  they, on a level with rotation about their own axes, rotate 

around of common center and one can observe a deformation of the vortices  they 

are drawn out, taking the form close to elliptical, but in due course return to an 

original state [Fig. 2(a)], thus their interaction is weak and it is reduced to a cyclic 

change of their shape (so-called "quasi-recurrence" phenomenon (Zabusky et al., 

1979) is observed).  

 

Fig. 2. Interaction of two vortices with 121   at initial distance 

between each other: a)  = 2d; b)  = d/2 

2. With decreasing of a distance the vortices start ever more to be deformed 

during interaction, that results in formation of the cusps (Belashov and Singatulin, 

2001). At further evolution it causes appearance of the filaments of vorticity 

(Belashov and Singatulin, 2001) (see. Fig. 3) and, as a result, the vortices disinte-

grate. 

3. For rather small  the vortices, on a level with rotation about their own 

axes and around of their common center, interact forming a common vortex region 

which consists of the vorticities of more small scales [Fig. 2(b)]. Thus, in this case 

the regime of active interaction with the "phase intermixing" takes place, and dif-
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ferent configurations are possible too from small coupling of the vortices down to 

full junction of two vortices (Kozlov and Makarov, 1985). 

 

Fig. 3. Formation of filaments of vorticity 

 

In our numerical experiments we have found that critical initial distance for two 

interacting vortices dividing these two types of interaction 4/3dcr  , where d is 

the vortex diameter. 

Note, that qualitative character of interaction of the vortices with different sym-

metry orders is, in general, the same, but in this case the vortex structures with 

more high symmetry order m liable to more high deformation (the vortex filaments 

appear) and have the greater tendency to destruction (Belashov and Singatulin, 

2003c). 

To make more strong analysis we shall suppose, that the qualitative change (some 

kind of a "jump") in a character of interaction of two vortex regions happens with 

transition to a "phase intermixing" state. The problem is to find some generalized 

critical parameter describing the interaction of the vortices in the terms of such 

jump, which value would allow us to predict the qualitative character of the result 

of vortex interaction. 

As such parameter we offer to use the following function of the basic 

characteristics of interacting vortex structures corresponding their state at t = 0: 
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where S is the area of each interacting FAVR
1
, l is the distance between their cen-

ters, 1 and 2 are the values of the vorticities (and 1  2), 2/)( 210 eee   is the 

eccentricity averaged on two vortices, and 21   is the sum of angles of incli-

nation of large axes of the vortex ellipses concerning a line, connecting their cen-

ters (see Fig. 4). 

 

Fig. 4. Illustration to definition of the initial state parameters of vortex system 

 

Let us introduce the following denotations for critical parameters corresponding an 

initial state of a vortex system and determining the transition to the "phase 

intermixing" state with change of the sizes and positional relationship of vortices, 

ratio of their vorticities, eccentricity and angle , respectively: 

2/ lS ,   21 /  ,     1
01


 e ,    2

0 sin1  

and write function  (20) in the following form 

0 .                                                   (21) 

To justify the expediency of offered criterion (21) we fulfilled some series of nu-

merical experiments in which the critical values of parameters , ,  and 0 for 

                                           
1
 Suppose, for a determinacy, that the areas of interacting vortices S1 = S2 = S. 
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vortex regions of the circle and elliptical form, as the models most often meeting in 

numerous applications, were calculated. 

With the purpose of finding of the critical value of the parameter , the system 

consisting from two circle vortices with equal values of vorticities and radiuses was 

considered: at fixed distance between the centers of two vortices we increased their 

radiuses (and, accordingly, areas) until there was an interaction. Thus the parame-

ters corresponding to the critical state of vortex pair were fixed. The quantities 

which uniquely determinate initial configuration of the system of two circle vorti-

ces are shown in Fig. 4. 

In our numerical simulations for the cases corresponding the initial states between 

the centers of vortices l =1, 2, …, 5 we have found that the beginning of interaction 

in all cases responds the approximately same value of parameter . The values of 

parameters, at which there is a qualitative change in the character of interaction  

the transition from steadily rotated pair to the "phase intermixing" state, are shown 

in Table 2. So, the results of numerical simulations enable us to conclude that the 

critical value of parameter , at which there is qualitative change in the interaction 

of the vortices, equals 267.0cr . For cr  the merging of the vortex regions 

does not happen during interaction, but as soon as parameter  reaches its critical 

value, there is a qualitative jump in behavior of the vortex system, and the vortices 

start to be intermixed. 

Table 2 

S l /l  

0.267864 1 0.416 0.267864 

1.067791 2 0.417 0.266947 

2.399785 3 0.417 0.266642 

4.271168 4 0.417 0.266947 

6.669121 5 0.417 0.266764 

 

The next series of the numerical simulations purposed a calculation of the critical 

value of the parameter . Our results showed that the vortices with the greater 
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value of  are exposed to the greater deformation, their filamentation (i.e. 

formation of the filaments of a vorticity) happens faster, thus the change in 

character of the interaction happens at the ratio of vorticities 11.1/ 21   (remind, 

that 21  ), therefore, 11.1cr . 

To answer a problem on the critical value of the parameter  a series of simulations 

for vortices of elliptical form was conducted (Fig. 4). We fixed the area S, at which 

the circle vortices still save a stable state, and at constS  changed the eccentrici-

ties 1e  and 2e . Further, we found the critical value 0e , at which the vortex system 

loses its stability transferring to the "phase intermixing" state. Thus, we considered 

the cases corresponding the initial states between the centers of vortices l =1, 2, …, 

5. The values of critical parameters, at which there is a qualitative change in the 

behavior of the system of two elliptical vortices, are presented in Table 3. 

Table 3 

l /l  0e  

1 0.180 0.266033 0.863847 

2 0.180 0.266033 0.866426 

3 0.183 0.266033 0.863834 

4 0.180 0.266490 0.863341 

5 0.180 0.266764 0.863037 

 

Numerical simulations have shown that there is the same for all cases a critical val-

ue of the averaged eccentricity, at which the "phase change" happens  864.00 e , 

that corresponds  = 7.143. Thus, as one can see from Table 3 the ratio /l is also a 

constant in a critical region, however it cannot be used as the critical parameter for 

the description of interaction, because, at first, it takes different values for elliptical 

and circle vortices (see Table 2), secondly, it is less information as determines only 

a distance between boundaries of the vortices, nothing speaking about their form. 

Therefore, for definition of the function  we use parameter , expressed through 

the averaged eccentricity. 
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Further investigations have been connected with a finding of the critical angle of 

inclination (see Fig. 4) of the elliptical FAVRs for the initial state of a system, at 

which the evolution results in qualitative change in character of their interaction. 

The simulations fulfilled show that increase of the angle of declination of the vor-

tex regions   at t = 0 more than on 4 leads to the transition to the unstable state. 

Thus, we mean as angle of inclination the summing angle 21  , and, for ex-

ample, the case when  221  is analogous to the case 0,4 21  . As it 

follows from processing of the results of this series of the simulations, the critical 

value of corresponding parameter is 005.10  . 

Summing all presented above results we can define a critical value of the 

generalized parameter  (21) as a multiplication of four parameters crcrcr  ,,  

and cr0 : 

129.20  crcrcrcrсr . 

Numerical simulations for cr  with simultaneous variation of critical param-

eters  ,,  and 0  corresponding to change of the sizes and positional relation-

ship of vortices, the ratio of their vorticities, eccentricity and the summing angle of 

inclination of their major axes  , respectively, have confirmed a capability and 

expediency of usage of the parameter   for prediction of character of interaction of 

the 2D vortex structures. 

Note that obtained results, despite their general significance in theory of vortex dy-

namics, can help to predict the temporal behavior of 2-vortex system in real physi-

cal media such as atmosphere, hydrosphere and plasma. 

3.2 Interaction in N-vortex systems  

To study the interaction in more complex N-vortex systems we considered the 

problems with N =3 and N =4 in two variants: 1) for vortices linearly disposed at 

initial time, and 2) for vortices disposed at initial time in the corners of appropriate 
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equilateral figures, and we used the critical parameter  in the analysis of obtained 

results. Fig. 5(a) shows an example of simulation of the interaction for initially lin-

ear disposition of four vortices. One can see that for rather big and equal initial dis-

tance between vortices the evolution leads to formation of two vorticity regions as 

a result of more strong interaction of each of the "outer" vortices with closest "in-

ner" vortex. Thus, the interaction of forming pairs is similar to that of two vortex 

case. In case 2/di   we observed the formation of a complex vortex structure 

which consists of many vorticities of more small scales [Fig. 5(b)]. Further evolu-

tion of such structure leads to formation of complex turbulent field. Note that in 

last case we can also see that the interaction between outer vortices is stronger. 

 
 

Fig. 5. Interaction of four linearly disposed vortices with 121  :  

a) di  ; b) 2/di   

 

This can be explained by the fact of more strong "attraction" of outer vortices to the 

"center of mass" of the vortex system because the outer vortex is attracted to the 

center by three other vortices, and the inner vortex is attracted to the center by two 

vortices and, to opposite side  by one outer vortex. To test this statement, in the 

next series of numerical experiments we have arranged outer and inner vortices on 

different initial distances. As a result, we observed the formation of common vor-
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tex structure from two inner vortices (see Fig. 6). The results obtained for the 4-

vortex system and the simulations for the 3-vortex system showed that in both cas-

es, owing to effect noted above, the critical initial value cr  dividing quasi-

stationary and active types of interaction is less than that for 2-vortex case. 

 

Fig. 6. Interaction of four linearly disposed vortices with  

121   for dout   and 2/dinn   

 

In the next series of numerical experiments we studied the interaction between the 

vortices disposed at initial time in the corners of appropriate equilateral figures. 

The following results were obtained. In case of evolution of three vortices with dif-

ferent signs of  being at initial time in the corners of triangle, we observed that a 

pair of them, having opposite polarities, behaves as well as pair of vortices with 

opposite polarities in 2-vortex case, and third vortex does not participate in interac-

tion almost, practically independently on value of )3,2,1(  ii . The similar char-

acter of interaction is observed for four vortices with different signs of  being at 

t = 0 in the corners of square (see Fig. 7, numbering of the vortices  clockwise, 

since the upper left corner). 

The character of interaction in the 3- and 4-vortex systems consisting of vortices 

having the same polarities depends essentially on the distances between them like 

that in the 2-vortex case. The examples of such interaction for crd  2/  and  

crd   are shown in Fig. 8. One can see that in the first case the four vortices 

are rotated forming one big vortex structure which consists of many vorticities of 

more small scales. In the second case we observed a "quasi-recurrence" phenome-



18 

 

non. Similar pictures take place in the 3-vortex systems when at 0t  the vortices 

are in the corners of triangle on the distances cr  or cr  one from another. 

 

Fig. 7. Interaction of four vortices for di 
 
with: a) 0,0 4231  ;  

b)  0,0 4321   

 

Fig. 8. Interaction of four vortices with the same polarities for: a) 2/di  ; b) di   

3.3 Three-dimensional vortices interaction  

 

Our modification of the CD method enables also to simulate the interaction dynam-

ics of the three-dimensional plane-rotating vortex structures in the "two-

dimensional approximation" within the framework of multilayered model of medi-



19 

 

um. Fig. 9 shows an example of results of numerical simulation of interaction of 

two three-dimensional vortices with the exponential decreasing of their vorticity in 

(x, y)-planes of rotation with z-coordinate. One can see that, in the beginning, the 

vortices' central regions start to interact and only then other their areas are involved 

in the interaction. Such behavior is explained by stronger interaction of central re-

gions, which locate at the relatively short distance each other and their vorticities 

have relatively big values, so that the ratio  /  is big in comparison with that for 

top and bottom of vortices. More strong analysis, however, requires more detail 

study of the regimes of this interaction, that has been discussed in detail above in 

point 3.1 of the paper. 

 

 

Fig. 9. Interaction of three-dimensional plane-rotating vortex structures  

in the many-layer model 
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4. Some examples of applications 

Consider now some examples of applications of our results to the problems of study of 

vortex motions in the atmosphere, hydrosphere and in a plasma of ionosphere. 

 

4.1 Vortical motions in the atmosphere and hydrosphere  

Using our technique we studied numerically the evolution and interaction of synop-

tic vortices and vortical structures in a fluid such as atmosphere and hydrosphere. 

Figures 10 and 11 show the examples of our results on modeling of the evolution of 

the cyclonic type synoptic vortex in the atmosphere and of the 4-vortical interac-

tion in the channel Naruto (Japan), respectively, in comparison with photos of real 

systems. Here we used our modified CD method for vortex structures with due ac-

count of scale parities of parameters of the model and real vortices which were 

simulated (see Table 4 below for detail).  

 

Fig. 10. Modeling of evolution of the cyclonic type synoptic vortex 

(numerical result and satellite photo) 

 

In these figures one can see that our numerical results are qualitatively coincided 

with the real systems which are simulated.  

Using the quasi-2D approach with many-layer approximation of the 3D vortical 

structure by the FAVR system we studied also the time evolution of a tornado, and 

our model vortex (FAVR system) has been associated with real tornado from vid-
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eo-record (see Fig. 12). One can see that our simulation reflects the basic features 

of evolution of a tornado such as its form, spatial structure and dynamics of evolu-

tion. In particular, we investigated an influence of the perturbation imposed on the 

tornado axis on its dynamics. We established as a result, that small cross-section 

indignation leads to inappreciable fluctuations of an axis and, as a whole, does not 

influence on structure and stability of a vortex. Let us note also that vertical mo-

tions in tornado, which are sufficient in such 3D natural vortices, are taken into ac-

count implicitly by the modified CD method as each point of the contour of each 

layer  interacts with each point of the contours of other layers. So, using our ap-

proach we can forecast tornado evolution and simulate interaction of such type of 

vortices. 

 

 

Fig. 11. Modeling of the 4-vortical interaction in channel Naruto,  

Japan (numerical result and air photography) 

 

As we mentioned above, to make modeling it is necessary to know the scale pari-

ties of parameters of the model and the real system which is simulated. One can see 

some of them in Table 4. 

 

4.2 Vortex structures in a plasma 

Using 2D model of plasma of Taylor-McNamara (Tailor and McNamara, 1971) we 
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studied the dynamics of charged filaments which represent streams of charged par-

ticles in a uniform magnetic field B. Fig. 13 shows the examples of our results for a 

few cases of the particles' streams with their cross-section perturbations. As is 

known such perturbations lead to deformations of a magnetic field in a zone polar 

cusp, which influence on dynamics of streams of the charged particles. 

 

Fig. 12. Evolution of the 3D tornado vortex 

Table 4. Scale parities of parameters of modeling and some real vortex systems 

Parameter Model values Tornado Tropical cyclones Ocean vortices 

R 1 10
2
 m 10

5 
m 2.510

4
 m 

V 1 100 m/с 10 m/с 2.5 m/с 

 1 1 с
-1

 10
-4

 с
-1

 10
-4

 с
-1

 

T 2 2 c 210
4 
с 210

4
 с 

 

We have found that the structures of vortical type are forming especially quickly 

and more intensively, than more amplitude of perturbations and quantity of the fil-
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aments participating in interaction, and also than more close to each other filaments 

are located. One can see also that the cross-section perturbations of velocity of a 

stream lead to its transition in a unstable state with formation of folds and complex 

vortical structures. 

 

Fig. 13. Vortex structures formation at cross-section perturbations of the charged 

filaments: (a) one perturbed line; (b) and (c) two lines  

with perturbations of the same and opposite polarities 

 

Next example is the interaction in the vortex-dust particles system. The theoretical 

analysis and the experimental results (Vaulina et al., 2001) show that in a plasma 

with gradient of dust charge the vorticity of dust particles can exist. (In particular, 

it was found that vertical vortices rotate with frequency 0.2-1.5 s
1

. Experiments 

were made in argon with the particles of melanin (the size of particles is about 3 

microns). During electrical discharge the formation of two vortices with opposite 

signs of vorticity was observed.) This gives a possibility to study the interaction 

between the "hydrodynamic" vortex structures and dust particles by use of the CD-

method considering the dust particles as vortices of very small scales (Belashov 

and Singatulin, 2003b). We studied numerically the interaction of the particles hav-

ing nonzero value of a vorticity with the vortical area of greater size. The results of 

our numerical simulations showed that the character of interaction in this case de-

pends on value of particles’ vorticity. If this value is very small that the interaction 
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does not observed. When the vorticity of dust particles becomes like vorticity of 

the "hydrodynamic" vortex, the interaction becomes significant. The examples of 

simulation for both linear dust layers and dust cloud are presented in Fig. 14, where 

one can see that the dust particles are involved by a vortex in large-scale rotation. 

This result is especially important for numerous possible applications in physics of 

an atmosphere and plasma where presence of dust particles practically always takes 

place. 

Next example of the application of our approach is investigation of the evolution of 

plasma clouds in the ionosphere. Such clouds are formed in the ionosphere under 

influence of solar ionization of artificial injected Ba in rocket experiments at 

heights of the F-region of ionosphere (Mishin et al., 1989). An example of our 

modeling results is presented in Fig. 15. 

 

Fig. 14. Interaction of dust particles with rather big values of vorticity  

with "hydrodynamic" vortex: a) linear dust layers; b) dust cloud 

 

Fig. 15. Evolution of artificial electron-ionic ionospheric  

inhomogeneity, cross-section section 
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One can see, that such plasma structures, that lead to formation the aligned along 

magnetic field B electron-ionic irregularities (mainly in collision plasma with small 

2/4 BnT ), diffusing across field B at evolution, get irregular “striped” struc-

ture. This effect is rather new because it was not found earlier [see, for example, 

(Overman et al., 1981)]. Our result coincides with the experimental data obtained 

in rocket experiments (Mishin et al., 1989). Such irregularities lead to development 

of nonlinearity in a F-layer and can lead to dispersion and fading of HF and VHF 

radio waves. 

 

4.3 Other possible applications 

 

Our approach can be useful in studies of other applications which are connected 

with dynamics of vortex and spiral structures in space and laboratory plasmas. One 

can note, for example, such of them as modeling of formation and evolution of 

vortical structures in astrophysics (such as spiral structure of Galaxies and solar 

flare activity associated with the dynamics of magnetic loops and magnetic tubes in 

the solar corona). Next examples are related to hydro- and aerodynamics (for-

mation of vorticities and vortical chains at flowing of solid bodies by streams of 

gas and a fluid), and to the problem of magnetic confinement of plasma and con-

trolled fusion, and also to some plasma technologies. 

 

5. Conclusion 

So, we have presented here the results of analysis and numerical simulation of evo-

lution and interaction of the N-vortex structures of various configurations and dif-

ferent vorticities in the continuum including atmosphere, hydrosphere and plasma 

on the basis of the model described by Eqs. (16) in terms of the vortex motion of 

the inviscid incompressible fluid. We have found that in dependence on initial con-

ditions the regimes of weak interaction with quasi-stationary evolution and active 

interaction with the "phase intermixing", when the evolution can lead to formation 

of complex forms of vorticity regions, are realized in the N-vortex systems. For the 
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pair of the vortices at 2-vortex interaction we managed to find the function  hav-

ing the sense of critical parameter which uniquely determines a qualitative charac-

ter of their interaction. It was shown that for given initial conditions its value di-

vides modes of active interaction and quasi-stationary evolution. Thus, comparing 

the value of  with its critical value cr  we can predict the result of interaction of 

the vortices, namely: if cr  then “phase intermixing” of vortices is not ob-

served with evolution, in the opposite case, when cr , the merging of vortices 

with further formation of the vorticities of more small scales is happen. For the vor-

tices of the circle and elliptical (or close to elliptical) form, the value of generalized 

critical parameter 129.2cr  corresponds to the “phase change” point. This result 

concerns only the systems which consist of two vortices. The generalization for a 

case of arbitrary number of vortex regions [in particular, for the 2D and quasi-3D 

N-vortex cases considered here and in (Belashov, 2016b)] requires padding investi-

gations.  

The results of simulation of evolution and interaction of the 2D and 3D vortex 

structures, including such phenomena as dynamics of the atmospheric synoptic vor-

tices of cyclonic type and tornado [on the basis of the multilayered model of medi-

um (Belashov, 2016a)], hydrodynamic 4-vortex interaction and also interaction in 

the systems of a type of “hydrodynamical vortex - dust particles” (when the dust 

particles are involved in rotation by hydrodynamic vortices), and dynamics of 

plasma clouds in the ionosphere of the Earth were presented. Other possible appli-

cations of the results obtained can be associated with study of dynamics of the 

Alfven vortices in plasma of the ionosphere and magnetosphere of the Earth 

(Pokhotelov et al., 1996), stability of vortex structures of different types and ori-

gins, including the quasi-geostrophic vortices in an ocean [Kozlov and Makarov, 

1985], dynamics of the acoustic-gravity waves in the Earth atmosphere (Izvekova 

et al., 2015), and motions in dust devils on surfaces of Earth and Mars (Izvekova 

and Popel, 2016). The approach proposed in the paper enables also to study the 

motions in the hydrodynamic model of rotating fluid that corresponds to the 
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screening interaction (Charney, 1948), and it can be useful for description of zonal 

flows in vortices in the ionospheric plasma (Benkadda et al., 2011). 

We have shown that the generalized set (16) with f =0 can describe also the dynam-

ics of quasi-particles with Coulomb interaction model [see Eqs. (10) and (11)], and 

the results obtained and presented in the paper can be easily extended to the 2D 

simple systems where the plasma is represented by charged filaments, aligned with 

a uniform magnetic field B, that move with the guiding-centre velocity 
2/ BBE . 

We have demonstrated the application of undertaken approach developed in 

(Belashov, 2015; Belashov, 2016b) to the problems of such plasma systems as 

streams of charged particles in a uniform magnetic field B. Note, that this approach 

can be useful and also for other 2D continuum models when 0f  in the Poisson 

equation (16). They can describe the vortices or filaments with the non-Coulomb 

interaction. In the last case it is assumed that ions move with the guiding-centre 

velocity but electrons have a Boltzmann distribution, thus the additional term 

 2kf  describes the Debye screening  see models (10), (12), (13) and the Ha-

segawa-Mima model (Hasegawa and Mima, 1978) which includes additionally the 

ion equation of motion (14). 

In conclusion, in the paper we have proposed the approach for investigations of the 

evolution and dynamics of the vortices of different type and origin in a continuum, 

have considered some problems on the basis of the modified CD method devel-

oped, and have shown that the results obtained have obvious applications in studies 

of the problems associated with the vortex movements in the atmosphere and hy-

drosphere, and in a plasma of the ionosphere and magnetosphere of the Earth. 
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