On Idempotent τ-Measurable Operators Affiliated to a von Neumann Algebra

A. M. Bikchentaev*
Kazan (Volga Region) Federal University, Kazan, Russia Received March 26, 2015; in final form, March 15, 2016

Abstract

Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathscr{M}, let p, $0<p<\infty$, be a number, and let $L_{p}(\mathscr{M}, \tau)$ be the space of operators whose p th power is integrable (with respect to τ). Let P and Q be τ-measurable idempotents, and let $A \equiv P-Q$. In this case, 1) if $A \geq 0$, then A is a projection and $Q A=A Q=0 ; 2$) if P is quasinormal, then P is a projection; 3) if $Q \in \mathscr{M}$ and $A \in L_{p}(\mathscr{M}, \tau)$, then $A^{2} \in L_{p}(\mathscr{M}, \tau)$. Let n be a positive integer, $n>2$, and $A=A^{n} \in \mathscr{M}$. In this case, 1) if $A \neq 0$, then the values of the nonincreasing rearrangement $\mu_{t}(A)$ belong to the set $\{0\} \cup\left[\left\|A^{n-2}\right\|^{-1},\|A\|\right]$ for all $t>0 ; 2$) either $\mu_{t}(A) \geq 1$ for all $t>0$ or there is a $t_{0}>0$ such that $\mu_{t}(A)=0$ for all $t>t_{0}$. For every τ-measurable idempotent Q, there is a unique rank projection $P \in \mathscr{M}$ with $Q P=P, P Q=Q$, and $P \mathscr{M}=Q \mathscr{M}$. There is a unique decomposition $Q=P+Z$, where $Z^{2}=0, Z P=0$, and $P Z=Z$. Here, if $Q \in L_{p}(\mathscr{M}, \tau)$, then P is integrable, and $\tau(Q)=\tau(P)$ for $p=1$. If $A \in L_{1}(\mathscr{M}, \tau)$ and if $A=A^{3}$ and $A-A^{2} \in \mathscr{M}$, then $\tau(A) \in \mathbb{R}$.

DOI: 10.1134/S0001434616090224
Keywords: Hilbert space, von Neumann algebra, normal trace, τ-measurable operator, nonincreasing rearrangement, τ-compact operator, integrable operator, quasinormal operator, idempotent, projection, rank projection.

INTRODUCTION

Let \mathscr{M} be a von Neumann algebra of operators in a Hilbert space \mathscr{H}, let τ be a faithful normal semifinite trace on \mathscr{M}, let p be a number, $0<p<\infty$, and let $L_{p}(\mathscr{M}, \tau)$ be the space of p-integrable operators (with respect to τ). In the paper, we obtain the following results concerning algebraic and order properties of the trace τ and of elements of the $*$-algebra $\widetilde{\mathscr{M}}$ of all τ-measurable operators.

Let $P, Q \in \widetilde{\mathscr{M}}$ be idempotents. If $A \equiv P-Q \geq 0$, then A is a projection and $Q A=A Q=0$ (Theorem 2.5); if P is quasinormal, then P is a projection (Theorem 2.10). If $Q \in \mathscr{M}$ is an idempotent and $A \equiv P-Q \in L_{p}(\mathscr{M}, \tau)$, then $A^{2} \in L_{p}(\mathscr{M}, \tau)$ (Theorem 2.30). If $A \in L_{1}(\mathscr{M}, \tau)$ and if $A=A^{3}$ and $A-A^{2} \in \mathscr{M}$, then $\tau(A) \in \mathbb{R}$ (Corollary 2.31).

Let n be a positive integer, $n>2$. If $A \in \mathscr{M}$ and $0 \neq A=A^{n}$, then the values of the nonincreasing rearrangement $\mu_{t}(A)$ belong to the set $\{0\} \cup\left[\left\|A^{n-2}\right\|^{-1},\|A\|\right]$ for all $t>0$ (Theorem 2.13). Let $\widetilde{\mathscr{M}}_{0}$ be the ideal of τ-compact operators in $\widetilde{\mathscr{M}}$, and let $\mathscr{F}(\mathscr{M})$ be the ideal of elementary operators in \mathscr{M}. If $A=A^{n} \in \mathscr{M} \cap \widetilde{\mathscr{M}}_{0}$, then $A \in \mathscr{F}(\mathscr{M})($ Corollary 2.14).

Let $A=A^{n} \in \mathscr{M}$. Then either $\mu_{t}(A) \geq 1$ for all $t>0$ (for $A \notin \widetilde{\mathscr{M}}_{0}$) or there is a $t_{0}>0$ such that $\mu_{t}(A)=0$ for all $t>t_{0}$ (for $A \in \widetilde{\mathscr{M}}_{0}$) (Corollary 2.15).

Let $A \in \widetilde{\mathscr{M}}$. Then $A \in \widetilde{\mathscr{M}}_{0}$ if and only if the real part of A^{2} and the imaginary part of A belong to $\widetilde{\mathscr{M}}_{0}$ (Theorem 2.18). A similar assertion holds also for the ideal $\mathscr{F}(\mathscr{M})$ (Theorem 2.19).

For every idempotent $Q \in \widetilde{\mathscr{M}}$, there is a unique projection $P \in \mathscr{M}$ such that $Q P=P, P Q=Q$, and $P \mathscr{M}=Q \mathscr{M}$ (Theorem 2.21; we call P the rank projection). There is a unique decomposition

[^0]
[^0]: *E-mail: Airat.Bikchentaev@kpfu.ru

