On Idempotent τ -Measurable Operators Affiliated to a von Neumann Algebra

A. M. Bikchentaev^{*}

Kazan (Volga Region) Federal University, Kazan, Russia Received March 26, 2015; in final form, March 15, 2016

Abstract—Let τ be a faithful normal semifinite trace on a von Neumann algebra \mathscr{M} , let p, $0 , be a number, and let <math>L_p(\mathscr{M}, \tau)$ be the space of operators whose pth power is integrable (with respect to τ). Let P and Q be τ -measurable idempotents, and let $A \equiv P - Q$. In this case, 1) if $A \ge 0$, then A is a projection and QA = AQ = 0; 2) if P is quasinormal, then P is a projection; 3) if $Q \in \mathscr{M}$ and $A \in L_p(\mathscr{M}, \tau)$, then $A^2 \in L_p(\mathscr{M}, \tau)$. Let n be a positive integer, n > 2, and $A = A^n \in \mathscr{M}$. In this case, 1) if $A \neq 0$, then the values of the nonincreasing rearrangement $\mu_t(A)$ belong to the set $\{0\} \cup [||A^{n-2}||^{-1}, ||A||]$ for all t > 0; 2) either $\mu_t(A) \ge 1$ for all t > 0 or there is a $t_0 > 0$ such that $\mu_t(A) = 0$ for all $t > t_0$. For every τ -measurable idempotent Q, there is a unique rank projection $P \in \mathscr{M}$ with QP = P, PQ = Q, and $P\mathscr{M} = Q\mathscr{M}$. There is a unique decomposition Q = P + Z, where $Z^2 = 0$, ZP = 0, and PZ = Z. Here, if $Q \in L_p(\mathscr{M}, \tau)$, then P is integrable, and $\tau(Q) = \tau(P)$ for p = 1. If $A \in L_1(\mathscr{M}, \tau)$ and if $A = A^3$ and $A - A^2 \in \mathscr{M}$, then $\tau(A) \in \mathbb{R}$.

DOI: 10.1134/S0001434616090224

Keywords: Hilbert space, von Neumann algebra, normal trace, τ -measurable operator, nonincreasing rearrangement, τ -compact operator, integrable operator, quasinormal operator, idempotent, projection, rank projection.

INTRODUCTION

Let \mathscr{M} be a von Neumann algebra of operators in a Hilbert space \mathscr{H} , let τ be a faithful normal semifinite trace on \mathscr{M} , let p be a number, $0 , and let <math>L_p(\mathscr{M}, \tau)$ be the space of p-integrable operators (with respect to τ). In the paper, we obtain the following results concerning algebraic and order properties of the trace τ and of elements of the *-algebra $\widetilde{\mathscr{M}}$ of all τ -measurable operators.

Let $P, Q \in \widetilde{\mathcal{M}}$ be idempotents. If $A \equiv P - Q \geq 0$, then A is a projection and QA = AQ = 0(Theorem 2.5); if P is quasinormal, then P is a projection (Theorem 2.10). If $Q \in \mathscr{M}$ is an idempotent and $A \equiv P - Q \in L_p(\mathscr{M}, \tau)$, then $A^2 \in L_p(\mathscr{M}, \tau)$ (Theorem 2.30). If $A \in L_1(\mathscr{M}, \tau)$ and if $A = A^3$ and $A - A^2 \in \mathscr{M}$, then $\tau(A) \in \mathbb{R}$ (Corollary 2.31).

Let *n* be a positive integer, n > 2. If $A \in \mathcal{M}$ and $0 \neq A = A^n$, then the values of the nonincreasing rearrangement $\mu_t(A)$ belong to the set $\{0\} \cup [||A^{n-2}||^{-1}, ||A||]$ for all t > 0 (Theorem 2.13). Let $\widetilde{\mathcal{M}}_0$ be the ideal of τ -compact operators in $\widetilde{\mathcal{M}}$, and let $\mathscr{F}(\mathcal{M})$ be the ideal of elementary operators in \mathcal{M} . If $A = A^n \in \mathcal{M} \cap \widetilde{\mathcal{M}}_0$, then $A \in \mathscr{F}(\mathcal{M})$ (Corollary 2.14).

Let $A = A^n \in \mathscr{M}$. Then either $\mu_t(A) \ge 1$ for all t > 0 (for $A \notin \widetilde{\mathscr{M}_0}$) or there is a $t_0 > 0$ such that $\mu_t(A) = 0$ for all $t > t_0$ (for $A \in \widetilde{\mathscr{M}_0}$) (Corollary 2.15).

Let $A \in \widetilde{\mathcal{M}}$. Then $A \in \widetilde{\mathcal{M}}_0$ if and only if the real part of A^2 and the imaginary part of A belong to $\widetilde{\mathcal{M}}_0$ (Theorem 2.18). A similar assertion holds also for the ideal $\mathscr{F}(\mathscr{M})$ (Theorem 2.19).

For every idempotent $Q \in \widetilde{\mathcal{M}}$, there is a unique projection $P \in \mathcal{M}$ such that QP = P, PQ = Q, and $P\mathcal{M} = Q\mathcal{M}$ (Theorem 2.21; we call P the rank projection). There is a unique decomposition

^{*}E-mail: Airat.Bikchentaev@kpfu.ru