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Abstract

We measure subnanometer displacements of thin samples vibrated by piezotransducer. Samples

contain 57Fe nuclei, which are exposed to 14.4 keV γ-radiation. Vibration produces sidebands from

a single absorption line of the sample. The sideband intensities depend on the vibration amplitude

and its distribution along the sample. We developed a model of this distribution, which adequately

describes the spectra of powder and stainless steel (SS) absorbers. We propose to filter γ-radiation

through a small hole in the mask, placed before the absorber. In this case only a small spot of the

vibrated absorber is observed. We found for SS foil that nuclei, exposed to γ-radiation in this small

spot, vibrate with almost the same amplitudes whose difference does not exceed a few picometers.

PACS numbers: 42.25.Bs, 42.50.Gy, 42.50.Nn
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I. INTRODUCTION

A scanning tunneling microscope (STM) demonstrates remarkable lateral and depth res-

olution. STM proved to be an excellent instrument for imaging surfaces at the atomic level.

Its development earned its inventors, Binning and Rohrer, the Nobel prize in Physics in 1986.

Information is acquired by monitoring the tunneling current as a function of tip position,

applied voltage, and local density of states. If local density of states is not well known, then

STM needs calibration. To solve the problem of absolute calibration of the conducting tip

displacement an etalon step is usually grown on the surface of the sample. Recently, fluores-

cence microscopy with nanoscale spatial resolution was invented, see the review by Stefan

Hell Ref. [1], the Nobel prize winner in Chemistry in 2014. This method allows to overcome

diffraction limit. Meanwhile, if we could apply γ-radiation for spatial measurements, then

Angstrom resolution scale could be achieved.

In this paper we discuss the application of γ-photons for sub-nanometer spatial measure-

ments with sub-Angstrom resolution. We employ 14.4 keV γ-photons, emitted by radioactive

57Co with a wavelength 86 pm. Since we are not able to focus γ-radiation field and direct it

to a desirable spot on the sample, we address to the spectral measurements. In our case, not

a fluorescence, but transmission spectra of the sample, containing resonant nuclei 57Fe, are

proposed to be measured. We expect high depth resolution, while lateral resolution could

be controlled by a mask with a small hole, which is moved along the surface of the sample.

We expect that our method could provide controllable and calibrated displacements of the

surface with sub-Angstrom resolution for calibrating, for example, STM.

In our method the sample containing resonant nuclei is mechanically vibrated. As a

result, along with the main absorption line, a system of satellites appears in the spectrum,

spaced apart at distances that are multiples of the vibration frequency. Line intensities of

this comb structure are very sensitive to the vibration amplitude, which is extremely small

(Angstrom or even smaller). For the stainless steel foil, which is illuminated by γ-radiation

transmitted through a small hole in the mask placed before the absorber, we measured

displacements of the order of dozens of picometers with the accuracy of a few picometers.

The influence of extremely-small-amplitude mechanical vibrations of the absorbers con-

taining Mössbauer nuclei attracted attention since the invention of Mössbauer spectroscopy.

Mössbauer sidebands, produced from a single parent line by absorber vibration, were ob-
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served in many different samples [2–12]. However, the intensity of the sidebands has not

been yet satisfactory explained [6, 7, 10]. There are two models of coherent and incoherent

vibrations of nuclei in the absorber [3–7, 10]. Coherent model implies piston-like vibra-

tion of the absorber with frequency Ω and phase ψ along the propagation direction of γ

quanta. This model predicts the intensity of the n-th sideband proportional to the square

of Bessel function J2
n(m), where m = 2πa0/λ is the modulation index, which is propor-

tional to the ratio of the amplitude of the harmonic displacements az(t) = a0 sin(Ωt + ψ)

and the wavelenght λ of γ-photon. Incoherent model, proposed by Abraham [16], is based

on the Rayleigh distribution of the nuclear-vibration amplitudes in the absorber predicting

the intensity proportional to exp(−m2)In(m
2), where In(m

2) is the modified Bessel func-

tion. However, both models or their combinations cannot describe perfectly all absorption

spectra, which are experimentally observed for samples of different mechanical properties

and chemical composition. To support this statement we refer to Chien and Walker who

pointed out in Ref. [6] that while unequivocally measured intensities agree qualitatively

with Abragam’s sideband theory, no existing theory at present can account quantitatively

for the sideband intensities since the amplitude distribution that satisfactorily describes the

data are not known at present.

We propose a heuristic distribution of nuclear-vibration amplitudes, which is derived

from the Gaussian distribution with appropriate modifications. Our model provides good

fitting of experimental spectra. Depending on a parameter of the model σ, the proposed

distribution tends to a delta-like, inherent to the coherent model if σ → 0, or it tends to the

Rayleigh distribution inherent to the incoherent model if σ → 0.72.

The proposed model allows to determine from experimental data the amplitude of

subnanometer harmonic displacements of the absorber with an accuracy less than half

Angstrom. Our method consists of two steps. First, we apply our heuristic distribution

to fit experimental spectra to the model. This fitting gives the parameter σ, which specifies

the appropriate distribution of the displacements irrespective to their location in the sample.

Second, we construct an actual distribution of the vibration amplitudes across the surface

of the absorber, which is consistent with our heuristic distribution.

Two absorbers are experimentally studied, i.e., K4Fe(CN)6 · 3H2O powder enriched by

57Fe and stainless steel (SS) foil with natural abundance of 57Fe. For powder, the distribu-

tion of the powder-grain displacements, obtained from the spectrum fitting, is close to the
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continuous uniform distribution with wide scattering of the vibration amplitudes, which is

very different from the Rayleigh distribution. For SS foil we found that the displacement

distribution along the surface of a thin foil is close to the narrow bell-shape distribution.

Physical interpretation of these results is discussed.

For SS foil we experimentally verified our conclusions placing a mask just in the front of

the absorber. We made a hole in the mask and compared the observed Mössbauer spectra

with our theoretical predictions. We observed a change of Mössbauer spectra with decrease

of the size of the hole, which firmly supports our model. We moved the narrowest hole of the

mask along the surface of the vibrated SS foil and could detect the change of the vibration

amplitude along the SS foil, which is deduced from the spectrum analysis. In addition to a

scientific value of our model giving an explanation of properties of the Mössbauer sidebands

produced by the absorber vibration, we expect that our findings could give an impetus to

the development of the method measuring extra-small displacements with an accuracy less

than half Angstrom.

II. COHERENT AND INCOHERENT MODELS OF THE MECHANICAL VI-

BRATIONS OF THE ABSORBER

The propagation of γ radiation through a resonant Mössbauer medium vibrating with

frequency Ω may be treated classically [13]. In this approach the radiation field from the

source nucleus after passing through a small diaphragm is approximated as a plane wave

propagating along the direction z. In the coordinate system rigidly bounded to the absorbing

sample, the field, seen by the absorber nuclei, is described by

ES(t− t0) ∝ θ(t− t0)e
−(iωS+Γ0/2)(t−t0)+ikz+iϕ(t), (1)

where ωS and k are the carrier frequency and the wave number of the radiation field,

1/Γ0 is the lifetime of the excited state of the emitting source nucleus, t0 is the in-

stant of time when the excited state is formed, Θ(t − t0) is the Heaviside step-function,

ϕ(t) = 2πaz(t)/λ = m sin(Ωt+ψ) is a time dependent phase of the field due to a piston-like

periodical displacement az(t) of the absorber with respect to the source, ψ is a vibration

phase, and λ is the radiation wavelength.

The radiation field (1) can be expressed as polychromatic radiation with a set of spectral
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lines ωS − nΩ (n = 0, ±1, ±2, ...), i.e.,

ES(t− t0) = EC(t− t0)e
−iωS(t−t0)+ikz

+∞∑

n=−∞
Jn(m)ein(Ωt+ψ), (2)

where EC(t− t0) = E0θ(t− t0)e
−Γ0(t−t0)/2 is the common part of the field components, E0 is

the field amplitude, and Jn(a) is the Bessel function of the nth order. The Fourier transform

of this field has a frequency comb structure

ES(ω) = E0

+∞∑

n=−∞

Jn(a)e
in(Ωt0+ψ)

Γ0/2 + i(ωS − nΩ− ω)
, (3)

where for shortening of notations the exponential factor with ikz is omitted. From this ex-

pression, it follows that the vibrating absorber ‘sees’ the incident radiation as an equidistant

frequency comb with spectral components ωS − nΩ whose amplitudes are proportional to

the Bessel function Jn(m).

The Fourier transform of the radiation field is changed at the exit of the resonant absorber

as (see [9, 13–15])

Eout(ω) = E0

+∞∑

n=−∞

Jn(m) exp
[
in(Ωt0 + ψ)− b

ΓA/2+i(ωA−ω)

]

Γ0/2 + i(ωS − nΩ− ω)
, (4)

where ωA and ΓA are the frequency and linewidth of the absorber, b = TAΓ0/4 is the

parameter depending on the effective thickness of the absorber TA = fnAσA, f is the Debye-

Waller factor, nA is the number of 57Fe nuclei per unit area of the absorber, and σA is the

resonance absorption cross section. The source linewidth ΓS can be different from Γ0 due to

the contribution of the environment of the emitting nucleus in the source. In this case Γ0

can be simply substituted by ΓS in Eq. (4). Here, nonresonant absorption is disregarded.

Recoil processes in nuclear absorption and emission are not taken into account assuming

that recoilless fraction (Debye-Waller factor) is f = 1. These processes can be easily taken

into account in experimental data analysis.

Time dependence of the amplitude of the output radiation field is found by inverse Fourier

transformation

Eout(t− t0) =
1

2π

∫ +∞

−∞
Eout(ω)e

−iω(t−t0)dω. (5)

In the laboratory reference frame this field is transformed as

Elab(t− t0) = Eout(t− t0)e
−iϕ(t). (6)
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Since the fields Elab(t− t0) and Eout(t− t0) differ only in the phase ϕ(t), the intensity seen

by the detector, Ilab(t − t0) = |Elab(t− t0)|2, coincides with the intensity of the radiation

field in the vibrated reference frame Ilab(t− t0) = |Elab(t− t0)|2, i.e.,

Ilab(t− t0) = Iout(t− t0). (7)

This condition is valid if we use the detection scheme, which is not sensitive to the spectral

content of the radiation field filtered by the vibrated absorber. If the second absorber (spec-

trum analyzer) is placed between the vibrated source and detector, then another description

of the radiation intensity is necessary [11, 12].

Since we don’t use a second single line resonance filter analyzing the spectra of γ radiation

emerging from the vibrated absorber, the intensity of the field, registered by a detector, can

be described by expression

Iout(t− t0) =
1

(2π)2

∫ +∞

−∞
dω1

∫ +∞

−∞
dω2Eout(ω1)E

∗
out(ω2)e

i(ω2−ω1)(t−t0). (8)

Thus, in our case the radiation intensity at the exit of the vibrating absorber is the same if

the source is vibrated instead of absorber.

Frequency-domain Mössbauer spectrum is measured by counting the number of photons,

detected within long time windows of the same duration for all resonant detunings, which

are varied by changing the value of a velocity of the Mössbauer drive moving the source.

Time windows are not synchronized with the mechanical vibration and their duration Tw is

much longer than the oscillation period Tosc = 2π/Ω. Since the emission time of γ-photons

is random, the observed radiation intensity is averaged over t0

〈Iout(t− t0)〉t0 ∝
1

Tw

∫ +Tw/2

−Tw/2
Iout(t− t0)dt0, (9)

where for simplicity we assume that Tw → ∞. Then the observed number of photon counts,

which is proportional to the intensity, i.e., Nout(∆) = 〈Iout(t− t0)〉t0 , varies with the change

of the resonant detuning ∆ = ωA − ωS as

Nout(∆) =

+∞∑

n=−∞
J2
n(m)Bn(∆), (10)

where

Bn(∆) =
ΓS
2π

∫ +∞

−∞

e
− bΓA

(ΓA/2)2+(∆+nΩ−ω)2

(ΓS/2)2 + ω2
dω. (11)
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FIG. 1: (color on line) (a) The dependence of the intensities of the central component (solid

line in red), first satellite (dotted line in blue), and second satellite (dashed line in black) on the

modulation index m for the coherent model. (b) The dependence of the averaged intensities of

the central component (solid line in red), first satellite (dotted line in blue), and second satellite

(dashed line in black) on m̄, which is the square root of the modulation index deviation 〈m2〉 in

the incoherent model.

A. Coherent model

If all the nuclei in the absorber vibrate with the same phase and amplitude, then a single

parent line is transformed into a set of spectral lines ωS±nΩ (n = 0, 1, 2, ...) spaced apart at

distances that are multiples of the oscillation frequency. The intensity of the nth sideband

is given by the square of the Bessel function J2
n(m). According to this theoretical prediction

the line intensities oscillate with increase of the modulation index m, see Fig. 1(a). For

example, the first sidebands, whose intensities are proportional to J2
±1(m) take their global

maxima whenm = 1.8, while the intensity of the central component J2
0 (m) is zero ifm = 2.4.

A model of uniform and phased vibrations of all the nuclei in the absorber is named the
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coherent model. Unfortunately, experiments with powder absorbers did not demonstrate

oscillatory dependence of the sideband intensities on the modulation index. Even in many

experiments the intensity of the central component was always the strongest, while the

intensity of the satellites, initially increasing with the modulation amplitude increase, then

monotonically decreased as a function of m. Meanwhile, experiments with stainless foil

[7, 10] showed appreciable decrease of the central component of the spectrum to the level of

the sidebands with increase of the modulation index m and some oscillating dependencies

of the spectral components on m.

B. Incoherent model

The incoherent model was proposed [2–6] to explain the discrepancy between the coherent

model and the experiment. It is based on the Abragam model [16] suggesting that the motion

of nuclei in the absorber can be described as the sum of two vibrations along the propagation

direction z of γ photon, i.e., az(t) = ax cos(Ωt+ψ)+ay sin(Ωt+ψ), where ax and ay are the

amplitudes, which are different for different coordinates x and y in the plane of the absorber

surface and in this sense az(t) is a vector [3]. These amplitudes are Gaussian-distributed,

centered at zero, and independent. Then, their distribution is described by the function

G(ax,y,
〈
a2x,y

〉
) =

exp

(
− a2x,y

2〈a2x,y〉

)

√
2π

〈
a2x,y

〉 , (12)

where
〈
a2x,y

〉
is variance, which is not zero, while 〈ax,y〉 = 0. The amplitude of the vector

az(t) is az =
√
a2x + a2y. If 〈a2x〉 =

〈
a2y
〉
= a2, the amplitude az is distributed as

PR(az, a2) =

∫ +∞

−∞
dax

∫ +∞

−∞
day

exp
(
−a2x+a

2
y

2a2

)

2πa2
δ(az −

√
a2x + a2y). (13)

In a polar coordinate system (r, φ) this distribution is transformed to

PR(az, a2) =

∫ 2π

0

dφ

∫ +∞

−∞
dr

exp
(
− r2

2a2

)

2πa2
δ(r − az), (14)

which gives the Rayleigh distribution

PR(az, a2) =
az

a2
exp

(
− a2z
2a2

)
. (15)
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Averaging the intensity of the nth sideband with this distribution

Wn(m) =

∫ ∞

0

PR(az, a2)Jn

(
2πaz
λ

)
daz, (16)

one obtains

Wn(m) = e−〈m2〉In
(〈
m2

〉)
, (17)

where 〈m2〉 = (2π/λ)2a2 and m =
√

〈m2〉. The dependence of the components Wn(m) on

m are shown in Fig. 1(b) for n = 0, 1, and 2 .

The physical difference between coherent and incoherent models is well formulated, for

example, in Ref. [18] where two cases of the nuclear vibrations are distinguished. If the re-

laxation time of the generated phonons, τph, is much greater than the lifetime of the excited

nucleus, 1/Γ0, then the acoustic wave can be considered as coherent and the coherent model

is applicable. If τph ≪ 1/Γ0, then the phonon excitation is thermalized and becomes inco-

herent. This case corresponds to the incoherent model when Abragam theory is applicable.

In the steady state excitation, energy flowing into the ultrasonic mode from the external

perturbation equals the energy dissipated due to anharmonic coupling with the other nor-

mal modes of the lattice causing also the fluctuations of the energy of the excited ultrasonic

mode. In quantum mechanical description, the stronger the coupling with the other modes,

the faster the decay rate of the excited mode is.

III. THE ARGUMENTS FOR A REVISION OF THE INCOHERENT MODEL

Actually the spectra of powder absorbers [3] and thin films, for example, stainless steel

foil, experiencing mechanical vibrations, [4, 6, 7, 10, 17] are quite different. Usually these

absorbers are glued on the surface of the transducer, fed by the oscillating voltage. The

transducers, made from piezo-crystal (for example, quartz) [2–12] or piezo-polymer-film (for

example, a polyvinylidene fluoride - PVDF), also produce different spectra since the con-

version factor of the PVDF drive is more than ten times larger than that of quartz [19].

Meanwhile, the Rayleigh distribution has only one parameter, which is variance of the dis-

placement amplitude a2, specifying also the values 〈m2〉 and m. However, in general the

distribution of amplitudes and phases of the nuclear vibrations should depend on the con-

struction of the absorber-transducer. Therefore, it is hard to expect that by one model with

a single parameter it would be possible to fit qualitatively different experimental spectra.
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In addition to the arguments given above, the incoherent model contradicts the obser-

vations of time domain spectra, which are obtained for γ rays from the vibrated source by

filtering trough a single line absorber [8, 9]. Similar experiments were performed with the

vibrated absorber and the source moved only by Mössbauer drive [14, 15, 20, 21]. In Ref. [9]

Monahan and Perlow developed a theory of quantum beats of recoil-free γ radiation, which

is emitted by frequency-modulated source and transmitted through a resonant absorber. It

follows from their model that if random phase ψ and amplitude az of the mechanical vibra-

tions are statistically independent and ψ is randomly distributed over the interval 0 and 2π,

no quantum beats will be observed. If ψ is distributed normally about ψ = 0 with variance

〈ψ2〉, then amplitudes of the harmonics in time domain spectra significantly decrease with

increase of the number of the harmonic. Since quantum beats of frequency modulated γ-

rays, which are transmitted through the resonant absorber, are reliably observed [8, 9], the

phase ψ is not randomly distributed over the interval 0 and 2π. Moreover, no extra damping

of the second harmonic with respect to the first harmonic in the harmonic composition of

the time-dependent counting rate of the filtered γ-photons was reported in Ref. [8, 9]. Thus,

even if the vibration phase ψ is random, the phase variance 〈ψ2〉 is negligibly small.

We can add to the arguments of Perlow and Monahan that if the phase is random, then

not only the amplitudes of quantum beats of the vibrational sidebands [see Eq. (2)], observed

in time domain spectra [8, 9], are reduced or even could vanish due to the phase fluctuation

of the vibrations, but also frequency domain spectra must be broadened. This can be shown

if we consider the radiation field ES(t − t0) with vibrational sidebands, described by Eq.

(2). It is natural to suppose that the phase ψ and modulation index m = 2πaz/λ, which

is proportional to the vibration amplitude az, are statistically independent. Therefore, the

averaging over these parameters can be made independently and the contribution of the

amplitude and phase fluctuations are factorized. Below we consider the contribution of the

phase fluctuations.

It is well known in quantum optics that if the phase ψ of the coherent field

En(t) = Ece
−iωSt+in(Ωt+ψ) (18)

randomly fluctuates in time, then the spectrum of the field is broadened, see for example,

Ref. [22].

Suppose that phase fluctuation follows phase diffusion process when phase changes by
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small jumps and due to a random walk the phase ψ can go very far from its initial value

taking all values between 0 and 2π. In this model it is assumed that the next value of phase

has a Gaussian distribution, which is symmetric around the prior value with variance 〈δψ2〉.
Phase diffusion process produces spectral broadening of the field En(t). If, for example,

without phase fluctuation the field spectrum was delta-like, then due to the random walk of

phase the power spectrum of the field becomes Lorentzian with the width νn = n2 〈δψ2〉 /τ0,
where 〈δψ2〉 is mean square value of the size of the phase jump and τ0 is a mean dwell time

between successive phase jumps [22].

The phase diffusion model predicts that the central component of the field (2) with

n = 0 is not spectrally broadened, while sidebands are broadened. The broadening of the

sidebands increases proportionally to n2. To take this broadening into account we have to

replace the halfwidth of the spectral components of the field Γ0/2 in Eqs. (3) and (4) by

γn = Γ0/2 + n2 〈δψ2〉 /2τ0, where n is the number of sideband. Usually, all experimental

spectra of the vibrated absorbers are fitted by the set of Lorentzians with the same width.

However, nobody reported progressive broadening of the satellites.

There is another model assuming that phase after a jump takes any value between 0 and

2π with equal probability. This uncorrelated process predicts the same broadening for all

sidebands except the central component with n = 0. According to this model, Lorentzian

broadening of the sidebands is equal to 1/τ0 [22]. As well, the marked difference between

the width of the central line and sidebands has not been yet reported.

Thus, we conclude that fast time variation of the phase of the mechanical vibration is not

present in the vibrated absorber or source if sidebands with the same width as the central

line are observed.

IV. THE MODEL OF COHERENT VIBRATIONS WITH NONZERO AVERAGE

AMPLITUDE

The Rayleigh distribution is derived with the assumption that the amplitudes ax and ay

are Gaussian-distributed, centered at zero, and independent, see Sec. II. This means that

ax,y = 0 has maximum probability. However, if we move a thin absorber by a coherently

vibrated transducer, it is better to suppose that the distribution of the vibration amplitudes

is centered at some value a0 6= 0. Below, following the arguments given in Sec. III, we
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assume that displacements along z direction are described by az = a(x, y) cosΩt, where

for simplicity we set ψ = 0. Then, it is natural to suppose that the amplitude a(x, y) is

Gaussian-distributed and centered at a0 with variance 〈δa2〉, i.e.,

G (a, a0) =
exp

(
− (a−a0)2

2〈δa2〉

)

√
2π 〈δa2〉

. (19)

Here, for briefness of notations, we omit the spatial dependence of the amplitude, i.e.,

a(x, y) = a. Usually Gaussian distribution is defined for the value a varied in the infinite

domain (−∞,∞). However, a is the amplitude, which is defined for positive values. There-

fore, we restrict domain of the amplitude variation by positive values (0,∞). To keep the

same overall density of our distribution we normalize it to the value

N (a0) =

∫ +∞

0

G (a, a0) da (20)

and obtain

Gnorm (a, a0) =
exp

(
− (a−a0)2

2〈δa2〉

)

N (a0)
√

2π 〈δa2〉
. (21)

This distribution needs further modification since the intensity of the nth sideband

Wn(a0) =

∫ ∞

0

Gnorm (a, a0) Jn

(
2πa

λ

)
da, (22)

is not zero for n 6= 0 if a0 = 0 and 〈δa2〉 6= 0. This discrepancy appears due to the fact that

the probability Gnorm (a, a0) does not become zero if a0 is zero, i.e., when no oscillations

should be present. The origin of this discrepancy comes from the variance 〈δa2〉, which
should be zero if a0 = 0. To fix this problem we define variance as 〈δa2〉 = (σa0)

2, which

means that variance is specified in a percentage σ of the mean value of the amplitude a0.

Then if a0 = 0, then variance is also zero. With these modifications we obtain the following

expression for the intensity of the nth sideband

W n (m0, σ) =

√
2
π

∫∞
0

exp
[
−1

2

(
x− 1

σ

)2]
J2
n(σm0x)dx

1 + erf
(

1√
2σ

) , (23)

where m0 = 2πa0/λ.

If σ = 0.1 the variance 〈δa2〉 is much smaller than a20. Then, the distribution Gnorm (a, a0)

is close to a delta-like [see Fig. 2(a)], and the dependence of the intensity W n (m0, σ) on m0

[see Fig. 3(a)] is very similar to that shown in Fig. 1(a) for the coherent model. If σ = 0.72,
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FIG. 2: (color on line) The dependence of our distributions Gnorm (a, a0) (dotted line in red)

and Raylegh distribution (solid line in blue) on the amplitude of the displacement az. In our

distribution variable a is expressed as az, which have the same meaning as a in Eq. (21). In both

plots a0 =
√

a2 = 3λ/2π, which corresponds to m0 = 3. Parameter σ is 0.1 in (a), and 0.72 in (b).

the variance 〈δa2〉 is comparable with a20. Then, the distribution Gnorm (a, a0) is close to the

Rayleigh distribution [see Fig. 2(b)], and the intensity W n (m0, σ) depends on m0 [see Fig.

3(a)] similar to that shown in Fig. 1(b) for the incoherent model.

V. EXPERIMENT

Our experimental setup is based on an ordinary Mössbauer spectrometer. The source,

57Co:Rh, is mounted on the holder of the Mössbauer drive, which is used to Doppler-shift

the frequency of the radiation of the source.

We carried out experiments with two differen absorbers. The first absorber was made of

enriched K4Fe(CN)6 ·3H2O powder with effective thickness 13.2. It was mechanically pressed

to the surface of the transducer. Therefore, in the experiments with powder the source was

mounted above the absorber and the detector was placed below the absorber. This vertical

geometry of the experiment allowed to consider a powder as a grained substance just freely

jumping up and down under the influence of the vibrating transducer.

As a transducer we used in both experiments a polyvinylidene fluoride (PVDF) piezo

polymer film (thickness 28 µm, model LDT0-28K, Measurement Specialties, Inc.). Several
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FIG. 3: (color on line) Dependence of the intensity W n (m0, σ) on m0 for our model. Parameter σ

is 0.1 in (a) and 0.72 in (b). Solid line (in red) corresponds to n = 0, dotted line (in blue) shows

the dependence for n = 1, and dashed line (in black) corresponds to n = 3.

piezoelectric transducer constructions were tested to achieve the best performance. The

best of them was a piece of 28 µm thick, 10×12 mm polar PVDF film coupled to a plexiglas

backing of ∼2 mm thickness with epoxy glue. The PVDF film transforms the sinusoidal

signal from the radio-frequency (RF) generator into a uniform vibration of the absorber

nuclei.

The second absorber was 25-µm-thick stainless-steel foil (from Alfa Aesar) with a natural

abundance (∼2.2%) of 57Fe. Optical depth of the absorber is TA = 5.18. The stainless-steel

foil is glued on the PVDF piezotransducer. Therefore, the experiments with stainless-steel

foil were carried out in a standard horizontal geometry.

A. Powder absorber

Initially we supposed that powder absorber would behave as a sand placed on the vibrated

transducer. Then, powder grains should randomly jump and fall down to the vibrated surface

with phase depending on the size and weight of the grains. Therefore, we expected that
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single parent line should not split in sidebands, which must be strongly broadened due to

the random motion of grains, and hence vibrational sidebands could give only a broadening

of the wings of the absorption line. However, in a wide range of the vibration frequencies

from 5 MHz to 45 MHz we observed the sidebands. We used the same voltage, 10V, supplied

from RF generator, except for high frequencies (35 , 40, and 45 MHz). For them we elevated

voltage up to 16V since the amplitudes of the sidebands significantly reduced with increase

of the RF frequency and we could observe for high frequencies only first two sidebands ωS±Ω

with very small intensities.

The fitting of the experimental data to the theoretical models is shown in Fig. 4, where

in (a)-(c) the Abragam model is used, while in (d)-(f) our model is applied to fit data.

Abragam model gives bad fitting except frequencies Ω equal or higher than 35 MHz when

we observed only three lines, i.e., the central component and two small sidebands. For

frequencies below 35 MHz, especially the central component and components near to it are

in a strong disagreement with the Abragam model. The spectra calculated according to our

model agree well with experiment.

According to our model, for the same voltage from RF generator (10V), mean value of the

modulation index m0 takes maximum value m0 = 5.6 for Ω = 7.5 MHz and then decreases

with increase of the frequency Ω. For example, for Ω = 15 MHz we have m0 = 4.7, while

for Ω = 20 MHz mean value of the modulation index drops almost two times, i.e., m0 = 2.6.

The smallest value of the modulation index m0 = 0.25 was obtained for Ω = 40 MHz when

the voltage was even elevated to 16V. Such a dependence of m0 on the modulation frequency

Ω could be explained by maximum efficiency of the process inducing mechanical vibrations

of the powder near Ω = 7.5 MHz.

The best fitting of the experimental data to our theoretical predictions is obtained with

σ = 0.85, which corresponds to the value of the square root of variance
√
δa2 equal to 85%

of the mean amplitude a0. This reflects a large spread of the amplitudes of the mechanical

vibrations a around a0. Comparison of our distribution Gnorm(a, a0) with the Rayleigh

distribution PR

(
az, a2

)
for m0 = 5.6 and σ = 0.85 is shown in Fig. 5. Our distribution

looks close to the continuous uniform distribution for the values of a between 0 and 2λ.

Since our powder is hygroscopic, it does not behave as a dry sand. Such a powder can

be compressed in a tablet-like substance, which shows small adhesion to the surface of the

PVDF transducer. This could explain the coherent move of the powder grains. Their
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FIG. 4: (color on line) Adsorption spectra of the powder absorber vibrated with frequency Ω equal

to 7.5 MHz (a) and (d), 10 MHz (b) and (e), and 15 MHz (c) and (f). Dots are experimental data,

solid line (in red) is the theoretical fitting to the Abragam model (a)-(c) and our model (d)-(f).

For the Abragam model the modulation index m0 = 2π
√

a2/λ is 3.42 in (a), 3.66 in (b), and 3.39

in (c). For our model we obtained m0, which is 5.6 in (d), 4.3 in (e), and 4.7 in (f).
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FIG. 5: (color on line) The functional dependence of our distribution Gnorm (a, a0) on the amplitude

of the displacement az for m0 = 5.6 and σ = 0.85 (dotted line in blue). The Rayleigh distribution

for the value of
√

a2 = a0, where a0 = m0λ/2π, is shown for comparison by the solid line (in red).

difference in size and orientation of the crystalline axis with respect to the direction of the

displacement z could explain almost continuous uniform distribution of the displacement

amplitudes.

B. Stainless steel absorber

The spectra obtained for the stainless steel absorber are quite different from those ob-

served for the powder absorber. They demonstrated some features typical for the coherent

model, see Fig. 6. However, these spectra could not be reasonably well described by the

simple coherent model.

In Ref. [10] it was assumed that some part of nuclei in the absorber vibrate coherently

with the same amplitude, while another part of nuclei also take part in the coherent vibration,

but for them the mean square displacement value changes from nucleus to nucleus. We

could fit experimental data for SS absorber to the model [10], where experimental spectra

are compared with theoretical predictions assuming a mixture (a simple sum with different

weights) of the coherent and incoherent models. However, this method did not allow to

obtain good fitting. Therefore, we decided to fit experimental spectra to our model. The

results of fitting are shown in Fig. 6.

C. Model for SS foil vibration

The fitting allowed us to find the parameter σ. Figure 7 shows comparison of our distribu-

tion for this parameter with the Rayleigh distribution for the modulation index m0 = 3.01.
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FIG. 6: (color on line) Adsorption spectra for SS absorber vibrated with frequency 10 MHz. Dots

are experimental data, solid line (in red) is the theoretical fitting to our model. Fitting parameters

are m0 = 1.19 and σ = 0.18 in (a), m0 = 2.38 and σ = 0.16 in (b), and m0 = 3.01 and σ = 0.16 in

(c).
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FIG. 7: (color on line) Comparison of our distribution Gnorm (a, a0) (dotted line in blue) with the

Rayleigh distribution (solid line in red) for the modulation index m0 = 3.01 and σ = 0.16.

It is clear that for SS absorber the distribution of the displacement amplitude looks bell

shape. Such a distribution gives a hint about a real distribution of the vibration amplitudes

along the surface of the absorber. Before constructing this real distribution we give some

arguments in support of the model.

PVDF film is glued on the solid plexiglas backing. Oscillating voltage forces the film to

change its thickness making it thicker or narrower. We may assume that the lateral size

of the film also oscillates. However, the solid backing resists the lateral changes of the film

size. Therefore, we may assume that amplitude of the displacement is larger in the center

of the film and smaller at the edges.

To avoid complications we model SS film as having a form of a disc with radius r0. This

disc vibrates such that the displacement has a maximum at the center and decreases to the

edges. All elements of the disc vibrate with the same frequency and phase. We assume that

the amplitudes of the vibrations are distributed according to a bell-shape function, slightly

resembling Gnorm(a, a0), as

az(r) = a0 cos

(
ξ
π

2

r

r0

)
, (24)

where a0 is a maximum amplitude at the disc center, r is a distance from the center, and ξ is

a parameter, which specifies the difference between the amplitudes at the center, az(0) = a0,

and edges, az(r0) = a0 cos (ξπ/2). If ξ ≪ 1, then this difference is small and the distribution

is close to that when the amplitudes are uniform along the absorber. If ξ = 1, then the

amplitude at the edges of the disc are zero. In both cases the distribution is a bell shape as

it is expected.

We assume that a beam of γ-radiation is transversely uniform and covers the hole disk.

Actually, this is not the case. In reality we have to consider 2r0 as a diameter of the γ-beam,
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which is defined by the collimator aperture and the distance from the source to absorber.

Then, the intensity of the transmitted radiation for the nth sideband is described by the

integral over the area S0 = πr20

W̃n(m0, r0, ξ) =
2

r20

∫ r0

0

J2
n

[
m0 cos

(
ξ
π

2

r

r0

)]
rdr, (25)

which is normalized to S0, where m0 = 2πa0/λ. Parameter r0 can be excluded from the

model if we introduce a variable x = r/r0. Then, Eq. (25) is reduced to

W̃n(m0, ξ) = 2

∫ 1

0

J2
n

[
m0 cos

(
ξ
π

2
x
)]
xdx. (26)

Thus, the parameter ξ defines a measure of homogeneity of the vibration amplitudes across

the beam of γ-radiation. If ξ → 0, the vibration amplitudes are almost the same for all

nuclei exposed to γ-radiation. If ξ → 1, the amplitudes are very different. Our modeling

assumption about the shape of the absorber is not important if 2r0 is smaller that the lateral

dimensions of the absorber. In this case 2r0 means just the γ-beam diameter.

The dependence of the intensities of the spectral components W̃n(m0, ξ) for n = 0, 1, and

2 is shown in Fig. 8. For small ξ (ξ = 0.1) this dependence is close to that inherent to the

coherent model since the vibration amplitudes of nuclei are almost the same. For the value

ξ (ξ = 0.95) the dependence resembles the predictions of the Abragam model.

The similarity of the results originates from the similarity of the structure of the integrals

in Eqs. (16) and (26) where the Bessel function is averaged with the function proportional to

azdaz in Eq. (16) and to xdx in Eq. (26). Another common feature is that both distributions

are centered at the value of the integration variable, which is zero, i.e., az = 0 in Eq. (16) and

x = 0 (r = 0) in Eq. (26). However, these distributions are very different in one important

point. Rayleigh distribution is based on the assumption that the probability has maximum

for zero displacement az. Our distribution assumes that the displacement amplitude has

maximum value a0 6= 0 when radius r, which is the averaging parameter, is zero.

Experimental spectra are described much better by theoretical prediction, based on the

disc model, compared with our first model. Therefore, we conclude that the disc model is

more appropriate for description of the SS foil vibration. The fitting parameter ξ is quite

small. This means that dispersion of the displacements along the surface of the film is also

small.
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FIG. 8: (color on line) Dependence of the intensity W̃n (m0, ξ) onm0 for the model of disc vibration.

Parameter ξ is 0.1 in (a) and 0.95 in (b). Solid line (in red) corresponds to n = 0, dotted line (in

blue) shows the dependence for n = 1, and dashed line (in black) corresponds to n = 3.

D. Absorber with a mask

We may assume that if the disc model is more adequate than other models, then fol-

lowing this model it would be possible to find experimental conditions when the vibration

amplitudes of nuclei, exposed to gamma radiation, could be made even more homogeneous.

ff we would increase the homogeneity, then the experimental spectra would be even more

closer to those, which follow from the coherent model.

According to the disk model the simplest way to increase the homogeneity of the displace-

ment is to remove the contribution of nuclei located far from the absorber center. This could

be done by placing a mask with a small hole in the front of absorber and locate the mask

such that the hole coincides with the absorber center. Then, γ-radiation will propagate only

through the hole, and only nuclei, located behind the hole will interact with γ-radiation.
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To make sure that our assumptions are correct, we measured several spectra with different

diameter of the hole. According to our expectations the spectra must change with the change

of the size of the hole.

The absorption spectra of the absorber with the mask are shown in Fig. 9. Diameter

of the mask was varied from 2.45 mm to 1.1 mm. These spectra are obtained for the

same frequency and voltage of RF generator. In the coherent model the central component

becomes zero for the modulation index m = 2.4. We suppose that spectra in Fig. 9

are obtained with the modulation index quite close to this value. Therefore, the observed

lessening of the central component of the absorption spectra with diminution of the mask

diameter proves that scattering of the vibration amplitudes of nuclei, exposed to γ-radiation,

becomes smaller with decrease of the size of the hole. At the same time the intensities of

the sidebands increase with diminution of the hole diameter.

For the smallest hole, the disc model gives the maximum value of the vibration amplitude

a0 = 36.7 pm at the disc center. The scattering parameter ξ = 0.21 for this hole is small.

Therefore, the amplitude at the disc edge az(r0) = a0 cos(ξπ/2) is 34.7 pm, which differs from

a0 only by 2 pm. This 5% difference gives the accuracy of the displacement measurement

with the smallest hole.

By this mask with the smallest hole (1.1 mm) we scanned the surface of the absorber.

The obtained spectra are shown in Fig. 10. Since the spectra obtained with the mask having

the smallest hole are very close to that predicted by the coherent model, we expect that

such a scanning is capable to provide the information about distribution of the vibration

amplitudes along the surface of the absorber. We obtained the following results. When the

hole coincides with the center of the absorber we have the splitting of the parent line into

sidebands, which corresponds to the modulation index m = 2.67, see Fig. 10(a). Positions

of the hole slightly below the center and shifted to the left in (c) and right in (d) give

reduction of the modulation index to the values m = 2.37 in (c) and m = 2.35 in (d). Since

these values are close to each other we may conclude that transverse shift (left/right) of

the hole does not show appreciable change of the vibration amplitude. If we move the hole

further down from the center, the value of the modulation index reduces to m = 1.74, see

Fig. 10(b).
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FIG. 9: (color on line) Adsorption spectra for SS absorber obtained with the mask. Diameter of

the hole in the mask is 2.45 mm in (a), 1.7 mm in (b), and 1.1 mm in (c). The absorber is vibrated

with frequency 10.7 MHz. Dots are experimental data, solid line (in red) is the theoretical fitting

to the disk model. The values of the modulation index m0 and parameter ξ are 1.85 and 0.27 in

(a), 2.08 and 0.25 in (b), and 2.68 and 0.21 in (c), respectively.

23



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) 

a 

b 

c d 

 

(b) 

 

(c) 

 

(d) 

FIG. 10: (color on line) Adsorption spectra for SS absorber obtained with the mask. The hole

diameter in the mask is 1.1 mm. The hole position on the absorber is shown in the inset in (a) by

black circles. Position of the upper circle coincides with the absorber center [spectrum (a)]. Other

circles are moved away to the bottom [spectrum (b)], to the left and bottom [spectrum (c)], and

to the right and bottom [spectrum (d)]. The absorber is vibrated with frequency 10 MHz. The

driving voltage is V = 10.7 V. Dots are experimental data, solid line (in red) is the theoretical

fitting. The fitting parameters are m0 = 2.67 and ξ = 0.18 in (a), m0 = 1.74 and ξ = 0.24 in (b),

m0 = 2.37 and ξ = 0.18 in (c), and m0 = 2.35 and ξ = 0.27 in (b).

VI. DISCUSSION

Our experimental results, obtained for SS foil, give a strong hint at the presence of

longitudinal distribution of the displacement amplitudes on the surface of the absorber,

while in the transverse direction the amplitudes are more homogeneous. Since PVDF film

is drawn and polarized during its fabrication, it is natural to expect the difference of the

displacements in longitudinal and transverse directions. Long polymer chains aligned along
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a particular direction give the origin to this asymmetry. Therefore, we assume that our disc

model cannot describe perfectly all the details of the vibration of the PVDF film together

with SS foil. However this model is good to describe the experiments with the mask having

a round hole. We plan to develop a strip model of the vibration, which could be more

adequate. Future experiments with a mask, whose small hole is scanned over the surface

of the absorber, could provide topographical information about amplitude distribution over

the sample surface. We expect that this information could help to construct such a model.

As regards the powder absorber, we could screen the powder through a set of grids to

make the powder grains almost of the same size. We expect that experiments with such a

homogeneous powder could elucidate the origin of the spectrum behavior of the vibrated

powder.

VII. CONCLUSION

We studied the transformation of Mössbauer single parent line of the vibrated absorber

into a reduced intensity central line accompanied by many sidebands. The intensities of

the sidebands contain information about the amplitudes of the mechanical vibrations and

their distribution along the surface of the absorber. Two absorbers, powder and SS foil,

are experimentally studied. The experimental spectra are fitted to the model with two

parameters, i.e., the mean amplitude of the vibrations and their deviation, which is defined

in a percentage of the mean amplitude. This model allows to conclude that the distribution

of the displacements in powder absorber is close to the continuous uniform distribution with

large scattering of the amplitudes, while for SS foil it is bell shaped with small scattering

of the amplitudes. We proposed a distribution of the displacements in SS foil, which is

related to the geometrical distribution of displacements along the surface of the foil. To

verify our proposal we measured the spectra of the vibrated SS foil placing a mask with a

small hole in it before the absorber. When the diameter of the hole in the mask is 1 mm,

the displacements become almost uniform with 5% scattering around maximum value of the

displacement. Therefore, the spectra can be described by the coherent model. This allows

to measure the displacements along the surface of the vibrated foil with the accuracy 2 pm.

We expect that our finding will open a way for a new kind of spectroscopical measurements

of extra small displacements.

25



VIII. ACKNOWLEDGEMENTS

This work was partially funded by the Russian Foundation for Basic Research (Grant No.

15-02-09039-a), the Program of Competitive Growth of Kazan Federal University, funded

by the Russian Government, and the RAS Presidium Program “Fundamental optical spec-

troscopy and its applications.”

[1] S. W. Hell, Nature Methods 6, 24 (2009).

[2] S. L. Ruby, D. I. Bolef, Phys. Rev. Lett. 5, 5 (1960).

[3] T. E. Cranshaw and P. Reivari, Proc. Phys. Soc. 90, 1059 (1967).
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