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ABSTRACT. We continue the study of symmetric logics, i.e., collections of subsets generalizing

Boolean algebras and closed under the symmetric difference. We contribute to several open ques-

tions. One of them is whether there is a non-Boolean symmetric logic such that all states on it are

�-subadditive.
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1. Motivation

Orthomodular posets and, in particular, orthomodular lattices appear as algebraic structures

of events in quantum mechanics, cf. [6, 7, 15, 16]. The natural requirement that the event system

must allow “sufficiently many” states leads (in its stronger form) to orthomodular posets which

can be represented as collections of subsets of a set generalizing σ-algebras [6]. In such collections,

the set-theoretical symmetric difference can be introduced as an additional operation [13] which

cannot be derived from the lattice-theoretical operations and orthocomplementation [8]. Thus we

arrive at the notion of a symmetric logic.

During the study of symmetric logics, many questions remained open (cf. [1,2]). Here we answer

some of them. We introduce necessary additional constructions with symmetric logics in Section 3.

In Section 4, we clarify under which conditions a symmetric logic becomes a Boolean algebra.

2. Basic notions

2.1. Concrete logics

Let Ω be a non-empty set. By 2Ω we denote the set of all subsets of Ω. For n ∈ N, we define

Ωn = {1, 2, . . . , n}.
Let us recall [6] that a collection E ⊆ 2Ω of subsets of Ω is called a concrete (quantum) logic if

the following conditions hold true:
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(C1) Ω ∈ E ,
(C2) A ∈ E =⇒ Ac := Ω \A ∈ E ,
(C3) A,B ∈ E , A ∩B = ∅ =⇒ A ∪B ∈ E .
A concrete logic E is called a σ-class [6] if it satisfies the following strengthening of (C3):

(C3’) {An | n ∈ N} ⊆ E , Am ∩An = ∅ whenever m �= n =⇒ ⋃
n∈N

An ∈ E .

A family E ⊆ 2Ω is a concrete logic if and only if it satisfies (C1) and the following condition:

(C4) A,B ∈ E , A ⊆ B =⇒ B \A ∈ E .

2.2. Symmetric logics

The set 2Ω is a group with respect to the symmetric difference operation: A� B := (A \B) ∪
(B \A). Notice that

Ac �B = (A�B)c ,

Ac �Bc = A�B .

The principal notion of this paper is the following [12: Definition 3.2]: A symmetric logic is a

concrete quantum logic E satisfying:

(S) A,B ∈ E =⇒ A�B ∈ E .

A family E ⊆ 2Ω is a symmetric logic if and only if it satisfies (C1) and (S) [1: Proposition 1].

Symmetric logics were investigated e.g. in [1–4, 8, 9, 12, 13].

Example 2.1� Let n ∈ N and Ω2n = {1, 2, . . . , 2n}. Then the family

Eeven
2n = {A ⊆ Ω2n | cardA is even}

is a symmetric logic on Ω2n.

Example 2.2� Let E ⊂ 2Ω be a concrete quantum logic and T ∈ E , T �= ∅. Then the family

ET = {A ∈ E | A ⊆ T } is a concrete logic with the greatest element T . Moreover, if E is a

symmetric logic, then ET is also a symmetric logic.

2.3. States

We say that a mapping m : E → [0, 1] is a state (or a probability measure) on a concrete logic E
if m(Ω) = 1 and m(A∪B) = m(A)+m(B) whenever A,B ∈ E , A∩B = ∅. Let us denote by P (E)
the set of all states on a concrete logic E . For each a ∈ Ω, we define the state ma concentrated in

a by

ma(C) =

{
1 if a ∈ C ,

0 if a /∈ C

for all C ∈ E . Recall that a state m ∈ P (E) is called subadditive [15: p. 829] if for each A,B ∈ E
there exists a set C ∈ E such that C ⊇ A ∪B and m(C) ≤ m(A) +m(B).

If E is a Boolean algebra then any state m ∈ P (E) is subadditive. There exists a concrete

quantum logic which is not a Boolean algebra and all of its states are subadditive. This result

was established in [14] with substantial help of the techniques developed in [10] and [11] (see also

[15: p. 831]).
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From now on, we suppose that E is a symmetric logic. A state m ∈ P (E) is called �-subadditive

[3] if

m(A�B) ≤ m(A) +m(B) for any pair A,B ∈ E .

The set of all �-subadditive states is convex. Every subadditive state m ∈ P (E) is �-subadditive

(hint: C ⊇ A ∪ B ⊇ A � B), but the reverse implication does not hold in general. In [2], the

following situations were demonstrated:

1) a �-subadditive state which is not subadditive;

2) a two-valued state which is not �-subadditive.

3. Auxiliary constructions

3.1. Symmetric logics generated by mappings

Let X , Y be sets and F : X → Y be a mapping. We extend it to a mapping F : 2X → 2Y

by F (A) := {F (x) | x ∈ A}. Then F (A ∪ B) = F (A) ∪ F (B) for all A,B ⊆ X . The following

conditions are equivalent (see [5: Chap. 1, §6, Exercise]):
a) F is an injection;

b) F−1(F (A)) = A for all A ⊆ X ;

c) F (A ∩B) = F (A) ∩ F (B) for all A,B ⊆ X ;

d) F (A) ∩ F (B) = ∅ for all A,B ⊆ X with A ∩B = ∅;

e) F (A \B) = F (A) \ F (B) for all A,B ⊆ X with B ⊆ A.

In particular, F (Ac) = F (X) \ F (A) ⊆ Y \ F (A) = F (A)c. Thus, if F is a bijection, then

F (Ac) = F (A)c.

We use the notation F (E) = {F (A) | A ∈ E}.
����������� 3.1� Let F : X → Y be a bijection. If E ⊆ 2X is a concrete logic (a σ-class, a

symmetric logic, resp.), then F (E) ⊆ 2Y is a concrete logic (a σ-class, a symmetric logic, resp.).

3.2. Restrictions of symmetric logics

For symmetric logics, a strengthening of Example 2.2 works; the element T need not be taken

from E :
����������� 3.2� Let E ⊆ 2Ω be a symmetric logic and T ⊆ Ω, T �= ∅. Then the family

E|T = {A ∩ T | A ∈ E} ⊆ 2T

is a symmetric logic with the greatest element T .

P r o o f. We shall verify conditions (C1) and (S). We have T = Ω ∩ T ∈ E|T and, for all A,B ∈ E ,
(A ∩ T )� (B ∩ T ) = (A�B) ∩ T ∈ E|T

by distributivity of the intersection with respect to the union. �

If E is a concrete logic which is not a symmetric logic, then the reduction E|T need not be a

concrete quantum logic, even if T ∈ E , as shown by the following example:
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Example 3.3� Let Ω = {1, 2, 3, 4, 5}, T = {2, 3, 5}, A = {1, 2}, B = {1, 3}, and
E = {∅,Ω, T, T c, A,Ac, B,Bc}.

Then E is a concrete quantum logic, but E|T = {∅, T, {2}, {3, 5}, {3}, {2, 5}} is not a concrete

quantum logic because {2} ∪ {3} /∈ E|T .
Example 3.4� In Example 2.1, let us take m ∈ P (Eeven

2n ) and T ∈ Eeven
2n , m(T ) > 0. Then formula

m(A ∩ T ) :=
m(A) +m(T )−m(A� T )

2m(T )
for A ⊆ T

defines a signed measure m on 2T [3: Theorem 2.1]. Moreover, m is �-subadditive iff m is a state

[3: Theorem 2.3].

4. When all states are �-subadditive

All states on Boolean algebras are subadditive and hence �-subadditive.

Problem 4.1� ([2: Problem 7.1]) Let E be a symmetric logic such that any state m ∈ P (E) is

�-subadditive. Is it true that E is a Boolean algebra?

In this section, we shall prove that Problem 4.1 has a positive solution in the finite case (Theo-

rem 4.3), but not in the infinite case (Proposition 4.7). For the former, we shall use the following

lemma (proved also for infinite sets for a possible future use):

	
��� 4.2� Let Ω be a finite or infinite set with cardΩ ≥ 2. Let E ⊆ 2Ω be a symmetric logic

such that each state on E is �-subadditive and let T ⊆ Ω, T �= ∅. Then each state on E|T is

�-subadditive.

P r o o f. Consider T ⊆ Ω, T �= ∅, and a symmetric logic E ⊆ 2Ω such that each state on E is

�-subadditive. By Proposition 3.2, the family E|T is a symmetric logic with the greatest element

T . Let us show that every m ∈ P (E|T ) is �-subadditive. Suppose the contrary: there exist

m ∈ P (E|T ) and A,B ∈ E|T such that m(A� B) > m(A) +m(B). We extend the measure m to

the function m̃ on E by the formula m̃(U) := m(U ∩ T ) for all U ∈ E . Then
a) m̃ ∈ P (E) and b) m̃ is not �-subadditive.

For the proof of a), put U, V ∈ E with U ∩ V = ∅. Then (U ∩ T ) ∩ (V ∩ T ) = ∅ and

m̃(U ∪ V ) = m((U ∪ V ) ∩ T ) = m((U ∩ T ) ∪ (V ∩ T ))

= m(U ∩ T ) +m(V ∩ T ) = m̃(U) + m̃(V )

by distributivity of the intersection with respect to the union and additivity of m. Thus m̃ ∈ P (E).
For the proof of b), put U, V ∈ E such that A = U ∩ T , B = V ∩ T . Then

m̃(U � V ) = m((U � V ) ∩ T ) = m((U ∩ T )� (V ∩ T )) = m(A�B)

> m(A) +m(B) = m(U ∩ T ) +m(V ∩ T ) = m̃(U) + m̃(V )

by distributivity of the intersection with respect to the symmetric difference. We have a contra-

diction. �


�
��
� 4.3� Let E be a finite symmetric logic such that each state on E is �-subadditive. Then

E is a Boolean algebra.
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P r o o f. Suppose that E is a finite symmetric logic of subsets of Ω. Without loss of generality, we

assume that E satisfies

∀a, b ∈ Ω :
[
a �= b =⇒ ∃A ∈ E : (a ∈ A & b /∈ A)

]
.

This means that each two points a, b ∈ Ω can be separated by an element of E . Such a repre-

sentation can be always found by the identification of points which cannot be separated. As E is

finite, so is Ω.

We use induction on n = cardΩ. We assume that Ω = Ωn = {1, 2, . . . , n} for n ∈ N. If n = 1,

then Ω1 = {1} and E = {∅,Ω1} is a Boolean algebra. If n = 2 and E separates points, then

E = {∅, {1}, {2},Ω2}, which is a Boolean algebra.

The induction conjecture: for n > 2, suppose that every symmetric logic E ⊆ 2Ωk for all

k ∈ {1, . . . , n}, such that each state on E is �-subadditive, is a Boolean algebra.

Consider a symmetric logic E ⊆ 2Ωn+1 such that every state on P (E) is �-subadditive. Let us

prove that E is also a Boolean algebra.

Now we show that {j} ∈ E for all j ∈ Ωn+1. Let us suppose the contrary: let {j} /∈ E for some

j ∈ Ωn+1. Let {Ak}lk=1 ⊆ E be such that
l⋂

k=1

Ak = {j}. For i ∈ Ωn+1, consider Ti = Ωn+1 \ {i}
and the symmetric logic E|Ti . We have Ak ∩ Ti ∈ E|Ti for all k ∈ Ωl and for all i ∈ Tj. By

Proposition 3.2, the family E|Ti is a symmetric logic with the greatest element Ti. By Lemma 4.2

every m ∈ P (E|Ti) is �-subadditive, and by the induction conjecture E|Ti is a Boolean algebra.

Hence
( l⋂

k=1

Ak

)
∩ Ti ∈ E|Ti for all i ∈ Tj. We have

( l⋂
k=1

Ak

)
∪ {i} = {i, j} ∈ E for all i ∈ Tj. By

taking symmetric differences of such elements of E we prove that every set A ⊆ Ωn+1 with even

cardinality lies in E . With the notation of Example 2.1, Eeven
n+1 ⊆ E .

Case I. Let n + 1 be odd. Then every set A ⊆ Ωn+1 with odd cardinality lies in E as a

complement of some set of even cardinality. Thus E = 2Ωn+1 .

Case II. Let n + 1 be even, n + 1 = 2t for some t ∈ N, t ≥ 2. It was proved earlier that

Eeven
n+1 ⊆ E . There exist non-�-subadditive measures on Eeven

n+1 . For example, put

m({1}) =
2

n+ 1
,

m({2}) = − 1

n+ 1
,

m({3}) = m({4}) = · · · = m({n+ 1}) = 1

n+ 1

and define m̃ ∈ P (Eeven
n+1 ) by the formula m̃(A) :=

∑
j∈A

m({j}) for A ∈ Eeven
n+1 . Then

3

n+ 1
= m̃({1, 3}) = m̃({1, 2}� {2, 3}) > m̃({1, 2}) + m̃({2, 3}) = 1

n+ 1
.

Thus Eeven
n+1 � E and there exists A ∈ E with cardA = 2u − 1 for some u ≤ t. Without loss of

generality we assume that A = Ω2u−1. If u ≥ 2, then A� {2, 3, . . . , 2u− 1} = {1} ∈ E . If u = 1,

then A = {1} ∈ E . In both cases, {1} ∈ E and {1} � {1, j} = {j} ∈ E for all j ∈ T1. Thus

E = 2Ωn+1. �

The following example will be used to show that Theorem 4.3 cannot be extended to infinite

symmetric logics:
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Example 4.4� Let Ω be an uncountable set. We define

B :=
{
A ⊆ Ω | cardA is finite or card(Ω \A) is finite} ,

Eeven
Ω :=

{
A ⊆ Ω | cardA is even or card(Ω \A) is even} ⊆ B .

Then B is an algebra (=field) of subsets of Ω and Eeven
Ω is a symmetric logic.

Remark 4.5� Example 4.4 can be described also as a kernel logic in the sense of [9, 11]. We may

define a measure µ : B → Z2 with values in the two-element cyclic group Z2 so that µ attains 0 at

Ω and 1 at all singletons. Then Kerµ = {A ∈ B | µ(A) = 0} = Eeven
Ω .

We shall show that Example 4.4 gives counterexamples to a conjecture formulated in [2]. For

this, we shall use the following property:

����������� 4.6� The symmetric logic Eeven
Ω from Example 4.4 contains each union of two dis-

joint sets from B \ Eeven
Ω .

P r o o f. Let A,B ∈ B \Eeven
Ω , A∩B = ∅. If A,B are finite, they have odd cardinalities and A∪B

has an even cardinality. If A is infinite, then Ω \ A and B ⊆ Ω \ A have odd cardinalities and

Ω \ (A ∪B) = (Ω \A) \B has an even cardinality. The sets A,B cannot be both infinite. �

����������� 4.7� Each state on Eeven
Ω from Example 4.4 is �-subadditive.

P r o o f. Let A,B ∈ Eeven
Ω and let m be a state on Eeven

Ω . We use the notation KA,B = {A ∩ B,

A ∩ Bc, Ac ∩ B,Ac ∩ Bc}. Notice that KA,B is a partition of unity, i.e., it consists of mutually

disjoint sets whose union is Ω.

We distinguish 3 cases:

Case I. Assume that A ∩B ∈ Eeven
Ω . Then A \B,B \A ∈ Eeven

Ω and

A \B ⊆ A , B \A ⊆ B ,

m(A \B) ≤ m(A) , m(B \A) ≤ m(B) .

Thus

m(A� B) = m(A \B) +m(B \A) ≤ m(A) +m(B) .

Case II. Assume that A ∩B /∈ Eeven
Ω and card(A ∩B) ≥ 3. Then A ∩B can be expressed as a

union of 3 disjoint sets, say R,S, T , from B \ Eeven
Ω . Also elements of KA,B do not belong to Eeven

Ω .

According to Proposition 4.6, Eeven
Ω contains disjoint sets R ∪ (A \B), S ∪ (B \A), T ∪ (Ac ∩Bc)

(which form a partition of unity) and also R ∪ S. Then

A \B ⊆ R ∪ (A \B) ⊆ A , B \A ⊆ S ∪ (B \A) ⊆ B ,

m(R ∪ (A \B)) ≤ m(A) , m(S ∪ (B \A)) ≤ m(B) .

Thus

m(A�B) = m((A \B) ∪ (B \A))
≤ m((A \B) ∪ (B \A)) +m(R ∪ S)

= m((A \B) ∪ (B \A) ∪ (R ∪ S))

= m((R ∪ (A \B)) ∪ (S ∪ (B \A)))
= m(R ∪ (A \B)) +m(S ∪ (B \A))
≤ m(A) +m(B) .
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Case III. Assume that Cases I and II do not apply. Then card(A ∩ B) = 1. The partition of

unity KA,B contains exactly one infinite set, say C. In C, we can find uncountably many mutually

disjoint nonempty sets from Eeven
Ω . Among them, we may find a U ⊂ C which has measure 0,

m(U) = 0. (Otherwise, we have uncountably many disjoint sets of non-zero measure; we get a

contradiction because we can choose a finite subfamily whose union has measure greater than 1.)

We define new sets A0 := A ∪ U ∈ Eeven
Ω , B0 := B ∪ U ∈ Eeven

Ω . (It is possible that A0 = A or

B0 = B.) As U has measure 0, the measures remain unchanged, in particular,

m(A0) = m(A) ,

m(B0) = m(B) ,

m(A0 �B0) = m(A�B) .

(The latter equality holds because A0 � B0 is either A � B or (A � B) \ U .) The important

difference is that

card(A0 ∩B0) = card((A ∩B) ∪ U) = card(A ∩B) + card(U) ≥ 3 ,

thus Case II applies to A0, B0 (in place of A,B). This proves the desired inequality

m(A�B) = m(A0 �B0) ≤ m(A0) +m(B0) = m(A) +m(B) .

�
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[15] PTÁK, P.: Concrete quantum logics, Internat. J. Theoret. Phys. 39 (2000), 827–837.

[16] SULTANBEKOV, F. F.: Set logics and their representations, Internat. J. Theoret. Phys. 32 (1993), 2177–2186.

Received 12. 2. 2014

Accepted 3. 9. 2014

*N. I. Lobachevskii Institute

of Mathematics and Mechanics

Kazan Federal University

Kremlevskaya 18, 420008

Kazan

RUSSIAN FEDERATION

E-mail : Airat.Bikchentaev@kpfu.ru

**Center for Machine Perception

Department of Cybernetics

Faculty of Electrical Engineering

Czech Technical University in Prague

Technická 2
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