НИГМАТУЛЛИНА АЛИНА ИЛЬДУСОВНА

ДИНАМИЧЕСКИЙ ТЕРМОЭЛАСТОПЛАСТ НА ОСНОВЕ БУТАДИЕН-НИТРИЛЬНОГО КАУЧУКА И ПОЛИПРОПИЛЕНА, МОДИФИЦИРОВАННЫЙ СЛОИСТЫМ СИЛИКАТОМ

05.17.06 - Технология и переработка полимеров и композитов

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Казанский государственный технологический университет» (ГОУ ВПО КГТУ)

Научный руководитель:

доктор технических наук, профессор

Вольфсон Светослав Исаакович

Официальные оппоненты:

доктор технических наук, профессор

Хозин Вадим Григорьевич

доктор химических наук, профессор

Антипов Евгений Михайлович

Ведущая организация:

Институт химической физики

им. Н.Н. Семенова РАН, г. Москва

Защита состоится « 15 » декабря 2010 г. в 12 часов на заседании диссертационного совета Д 212.080.01 при ГОУ ВПО «Казанский государственный технологический университет» по адресу: 420015, г. Казань, ул. К. Маркса, 68 (зал заседаний Ученого совета)

С диссертацией можно ознакомиться в фундаментальной библиотеке ГОУ ВПО «Казанский государственный технологический университет».

Электронный вариант автореферата размещен на официальном сайте ГОУ ВПО «Казанский государственный технологический университет» (www.kstu.ru).

Автореферат разослан « » ноября 2010 г.

Ученый секретарь диссертационного совета

Mepejo60

Е.Н. Черезова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В последние годы интенсивно развивается производство и применение динамических термоэластопластов (ДТЭП), сочетающих свойства вулканизованных каучуков при эксплуатации и термоэластопластов в процессе переработки. Изменением соотношения каучуков и термопластов, используемых для изготовления ДТЭП, можно добиться в изделиях из них нужных показателей в диапазоне от резины до пластмассы. На протяжение ряда лет развитие сырьевой базы производства композиционных изделий в ведущих странах мира имеет тенденцию к непрерывному росту потребления термоэластопластичных материалов. Основная причина такого роста заключается в том, что применение ДТЭП дает возможность создания полностью автоматизированного процесса производства, сокращение расходов энергозатрат, утилизации отходов, а также возможность многократной переработки материала без ухудшения свойств, что обеспечивает снижение стоимости готовой продукции.

Благодаря своей относительной низкой стоимости и достаточно высоким эксплуатационным характеристикам ДТЭП является одним из перспективных классов полимерных композиционных материалов. Объем производства термопластических эластомеров (ТПЭ) в мире в настоящее время составляет около 3 млн т/год.

Повышенным спросом пользуются ДТЭП на основе смеси полиолефинов с олефиновыми или диеновыми каучуками. К недостаткам этих полимерных материалов относится низкая маслобензостойкость, что существенно ограничивает область их применения. Наиболее распространенный ДТЭП с повышенной маслобензостойкостью изготавливают на основе смеси полипропилена (ПП) с бутадиен-нитрильным каучуком (БНКС), что обусловлено доступностью компонентов и их высокой стойкостью к углеводородам. Однако при смешении полярной эластомерной фазы и неполярной термопластичной фазы имеет место плохая совместимость полимеров, вследствие чекомпозиционный материал имеет невысокие деформационнопрочностные характеристики. Кроме того, в последнее время ко всем композиционным материалам предъявляются новые дополнительные требования, связанные с термо-огнестойкостью.

Структурой композиционного материала на основе несовместимых полимеров можно управлять, вводя в композицию специальные наполнители и изменяя технологию смешения. Таким образом, в направленном выборе полимеров и наполнителя, создании оптимальных технологических режимов кроются пути улучшения эксплуатационных свойств ДТЭП на основе каучука (БНКС) и полипропилена (ПП). В последние годы интенсивно растет число работ, посвященных получению и исследованию полимерных нанокомпо-

зитов, содержащих в качестве наполнителя наночастицы слоистых силикатов, что связано с их способностью в определенных условиях расслаиваться полимерной матрице на отдельные пластины, образуя неорганический композит. В основном изучались композиты на основе одного полимера (или полиолефина или эластомера) и слоистого силиката. В литературе отсутствуют данные об использовании слоистых силикатов в смесях полимеров, в частности на основе ПП и БНКС, имеющих разную полярность. Следует отметить, что многие физико-механические и другие эксплуатационные характеристики композиций могут быть существенно улучшены введением небольшого (обычно менее 5% по объему) количества наночастиц слоистого силиката.

В связи с вышеизложенным целью настоящей работы явилась разработка ДТЭП на основе бутадиен-нитрильного каучука (БНКС) и полипропилена (ПП) с улучшенным комплексом свойств за счет введения в композицию нанонаполнителя — слоистого силиката многофункционального назначения.

Для достижения поставленной цели решались следующие задачи:

- определение влияния содержания акрилонитрила в БНКС на совместимость и адгезионные свойства системы ПП-БНКС;
- оценка совместимости модифицированного слоистого силиката с компонентами ДТЭП;
- исследование влияния технологии введения модифицированного слоистого силиката на структуру и свойства ДТЭП;
- разработка оптимальной рецептуры и технологии получения ДТЭП, модифицированного слоистым силикатом.

Научная новизна. Впервые получен нанокомпозит на основе смеси полимеров бутадиен-нитрильного каучука (БНКС-18) и полипропилена (ПП) с применением модифицированных наноглин путем предварительного смешения в расплаве каучука и модифицированного слоистого силиката с последующим смешением с полипропиленом. На основании рассчитанных и экспериментально определенных параметров растворимости, полярностей, термодинамических и энергетических параметров взаимодействия, оценена совместимость компонентов полимерной фазы ДТЭП (ПП и БНКС) и их совместимость с модифицированными глинами — слоистыми силикатами. Это позволило обосновать выбор компонентов и найти оптимальные условия приготовления ДТЭП.

<u>Практическая ценность.</u> Найдена добавка — модифицированный нанонаполнитель, который позволяет повысить совместимость между ПП и БНКС и улучшить потребительские свойства ДТЭП на основе этих полимеров. Разработан маслобензотермостойкий ДТЭП, который не уступает по свойствам зарубежным аналогам.

w-жет ве тво соватования и начил остемосом ведевации от мунито ком - казане кине инвиделжекии) и дельтывым инверсуптите 4 огом 1021602841391 Научитая библиотека им. Н.И. Лобачевского Реализация и внедрение результатов работы. В ЗАО «Кварт» выпущена опытно-промышленная партия модифицированнного ДТЭП в количестве 1000 кг. Проведенные расширенные физико-механические и эксплуатационные испытания показали, что ДТЭП, модифицированный ММТ Cloisite 15A превосходит по свойствам немодифицированный аналог и рекомендуется к внедрению в производство.

Апробация работы и публикации: Результаты работы докладывались на следующих научных конференциях: 24-й Международной научнопрактической конференции «Резиновая промышленность. Сырье. Материалы. Технология» (Москва, 2008), 12-й и 13-й Международных конференциях молодых ученых «Синтез, исследование свойств, модификация и переработка ВМС», (Казань, 2008 и 2009), 4-й Всероссийской научной конференции «Физикохимия процессов переработки полимеров», (Иваново, 2009), 2-й Всесоюзной научно-практической конференции «Каучук и резина 2010» (Москва, 2010), 5-й Всероссийской Каргинской конференции «Полимеры – 2010», (Москва, 2010), Международном симпозиуме «Наноматериалы для защиты промышленных и подземных конструкций», (Усть-Каменогорск, Казахстан, 2010), Международной научной конференции «Современные наукоемкие технологии», (Израиль, 2010).

Данная работа удостоена премии V Республиканского конкурса "Пятьдесят лучших инновационных идей для Республики Татарстан" в номинации "Молодежный инновационный проект" (2008 г.)

По материалам диссертации опубликованы 8 статей, в т.ч. 6 статей, рекомендованных ВАК для размещения материалов диссертаций, 10 тезисов докладов.

Работа выполнялась в рамках реализации ГК № 02.552.11.7070 от 02.10.2009 и ГК № П866 от 25.05.2010.

Структура и объем диссертации Работа изложена на 174 страницах, содержит 47 рисунков и 37 таблиц, перечень литературы из 173 ссылок и состоит из введения, трех глав (литературный обзор, экспериментальная часть, обсуждение результатов), выводов, списка используемых источников и приложения.

В руководстве работы принимали участие к.х.н. Сабиров Р.К. и к.т.н. Охотина Н.А. Автор выражает свою глубокую благодарность сотрудникам ФГУП «ЦНИИгеолнеруд» за помощь при обсуждении результатов работы.

Объекты и методы исследования

В работе были исследованы композиционные материалы – динамические термоэластопласты (ДТЭП) на основе изотактического полипропилена (ПП) марки 01030 «Бален» и бутадиен-нитрильного каучука (БНКС). Содер-

жание каучука в ДТЭП составляло 50-70%, поскольку материалы такого состава имеют наибольший потребительский спрос.

В качестве наполнителей использовали: продукт марки Cloisite 15A (MMT) фирмы Rockwood (США), представляющий собой природный Na⁺монтмориллонит, модифицированный четвертичными аммониевыми солями (ЧАС) типа $[(\text{RH})_2(\text{CH}_3)_2\text{N}]^+\text{Cl}^+$, где R – остаток гидрированных жирных кислот С₁₆-С₁₈, с исходной катионной обменной емкостью 125 мг-экв/100 г: слоистый алюмосиликат бентонит Березовского месторождения Республики Татарстан (БП), содержащий 60% монтмориллонитовой фракции, с катионной обменной емкостью 60 мг-экв/100 г. В качестве модификаторов для обработки бентонита использованы ЧАС: алкилбензилдиметиламмоний хлорид $[C_nH_{2n+1}N(CH_3)_2CH_2C_6H_5]^+CI$, где n=10÷18 (Катамин АБ) и додецилтриметиламмоний хлорид $[C_{12}H_{25}N(CH_3)_3]^+Cl^-$ (ДАХ) при глина: ЧАС = 1: 0,2. Модифицированные глины имеют следующие условные обозначения: ММТ, БП-КАБ, БП-ДАХ.

Смешение полимерных компонентов между собой и с наполнителями проводилось в расплаве в двухроторном смесителе периодического действия «Brabender» с регулируемым электрообогревом и скоростью вращения роторов. Использовалась серная вулканизующая система.

Для исследования структуры и свойств композитов применялись дисперсионный анализ, гель-проникающая хроматография, расчетный и экспериментальный методы определения параметров растворимости полимеров, рентгеноструктурный анализ, дифференциально-сканирующая калориметрия и термогравиметрический анализ, сканирующая электронная микроскопия, реологические и стандартные методы исследования физико-механических свойств композиций.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Совместимость компонентов ДТЭП и оценка их адгезионных свойств

Для разработки и получения дисперсно-наполненных систем с высокими физико-механическими свойствами необходимо было оценить степень совместимости бутадиен-нитрильных каучуков с полипропиленом, определить термодинамические и энергетические параметры их взаимодействия (адгезионную прочность системы полиолефин-эластомер), а также оценить совместимость модифицированных глин — слоистых силикатов с основными компонентами ДТЭП.

Для оценки совместимости полипропилена с бутадиен-нитрильными каучуками были найдены их параметры растворимости δ путем теоретиче-

ского расчета (по методу Аскадского) и экспериментального определения (по методу Хансена), рассчитаны их полярности и параметр совместимости.

По методу Хансена была изучена растворимость ПП и БНКС различных марок в 33 растворителях, для которых известны дисперсионная, полярная и водородная составляющие параметров растворимости. В результате построения объемных моделей с осями координат, соответствующих трехмерным параметрам растворимости, найдена область растворимости, представляющая собой сферу, координаты центра которой являются параметрами растворимости данного вещества.

По доле полярной и водородной составляющих в параметрах растворимости полимеров были рассчитаны показатели полярности ζ ПП и БНКС.

Условия смешения полиолефина с эластомером наиболее благоприятны, если энтальпия смешения стремится к нулю, что возможно при максимальной близости параметров растворимости смешиваемых компонентов, и характеризуется параметром совместимости $\boldsymbol{\beta}$.

Результаты расчетов и экспериментов представлены в табл. 1.

Таблица 1 - Параметры растворимости δ , полярности ζ и совместимости β для системы бутадиен-нитрильный каучук – полипропилен

100	Параметры растворимости, (МДж/м³) ^{1/2}						Параметр совместимости, β, МДж/м ³	
Полимер	Расчет- ный	Экспериментальный				ζ	Расчет- ный	Экспери- менталь-
	δ	δ	δ_{d}	$\delta_{\rm p}$	$\delta_{\rm h}$		1	ный
БНКС-18	17,1	17,7	16,9	3,5	3,9	0,09	0,8	0,5
БНКС-28	18,1	18,6	17,1	5,5	4,7	0,15	3,4	2,6
БНКС-40	19,0	19,6	17,2	6,8	6,5	0,23	7,3	6,8
ПП	16,2	17,0	16,8	1,9	2,1	0,03	-	•

Как видно из табл. 1, наиболее близкими значениями приведенных параметров характеризуется пара БНКС-18 — ПП, следовательно, она будет обладать большим сродством друг к другу.

По найденным значениям параметра растворимости по формуле Гильдебранта-Вуда была рассчитана поверхностная энергия полимеров о* (табл.2).

С учетом энергии когезии ΔE^*_{i} , рассчитанной при определении параметра растворимости, и значений поверхностной энергии полимеров σ^* были рассчитаны параметры α , характеризующие адгезионные свойства полимеров, и отношения α каучуков к α ПП (табл. 2). Параметр α равен отношению эффективной мольной энергии когезии к поверхностной энергии.

Как видно из табл. 2, минимальной адгезионной способностью характеризуется ПП, а максимальной БНКС-18.

Таблица 2 — Оценка адгезионных свойств полипропилена и бутадиен- нитрильных каучуков

Полимер	ΔЕ* _I , Дж/моль	σ*, мДж/м²	α·10 ⁻³ , м ² /моль	$\alpha_{\kappa}/\alpha_{\Pi\Pi}$
ПП	8115	31,3	259	1,0
БНКС-18	10817-11125	24,4	443-456	1,71-1,76
БНКС-28	11846-12154	28,7	413-423	1,59-1,63
БНКС-40	12772-13183	35,4	361-372	1,39-1,44

Затем была оценена совместимость модифицированного слоистого силиката ММТ Cloisite 15A с полипропиленом и каучуком путем сравнения полярности компонентов ДТЭП и органоглины. Для определения полярности модифицированной глины изучили степень ее набухания в жидкостях различной полярности, в том числе и в воде.



Рисунок I— Зависимость степени набухания модифицированной глины от полярности растворителя

На рис. 1 представлена зависимость степени набухания глины от полярности растворителей, из которой видно, что наблюдается максимум набухания в жидкостях с полярностью ζ около 0,07(о- и пхлороформ). ксилолы, свидетельствует о том, что полярность большей поверхности органоглины близка по полярности к БНКС-18, равной 0,09. Одновременно органоглина набухает и воде (18%), что указывает на мозаичность поверхности глины, то

есть на наличие адсорбционных центров разных видов, способных одновременно и независимо друг от друга адсорбировать вещества с различными полярными и неполярными группами. Преобладание гидрофобной поверхности глины в результате модифицирования определяет сродство ММТ к полиолефину и каучуку. Система БНКС-ММТ будет иметь более высокую адгезионную связь, чем система ПП-ММТ, т.к. каучук содержит в своем составе полярные и неполярные группы, способные к взаимодействию с ММТ.

На основании проведенных исследований для получения ДТЭП был выбран бутадиен-нитрильный каучук БНКС-18.

2. Изучение свойств и структуры композитов на основе ДТЭП и модифицированных глин

Динамические термоэластопласты были изготовлены путем смешения в двухроторном смесителе периодического действия в расплаве ПП марки 01030 «Бален» и БНКС-18 при содержании каучука 50-70 мас. ч. на 100 мас. ч. смеси полимеров. Для вулканизации каучуковой составляющей ДТЭП использовалась серная система, смеси не содержали других наполнителей, кроме слоистых наполнителей. Органоглины ММТ Cloisite 15A и бентониты Березовского месторождения БП— Катамин АБ, БП—ДАХ вводились при изготовлении ДТЭП либо в каучук, либо в полипропилен.

Результаты физико-механических испытаний композитов на разрывной машине Inspect mini представлены в табл. 5. Из данных таблицы следует, что наилучшим комплексом свойств обладают композиты, содержащие 1-3 мас. ч. ММТ Cloisite 15A, введенных в каучук.

Таблица 3 — Деформационно-прочностные свойства дисперснонаполненных ДТЭП в зависимости от содержания и различной последовательности введения ММТ при разном соотношении БНКС-18 и ПП

Соотношение	Последовательность	Содержание	σ,	E,	ε,
БНКС-18:ПП	введения ММТ	ММТ, мас.ч.	МПа	МПа	%
1	2	3	4	5	6
	Композиции с М	MT Cloisite 15A			
	-	0	4,0	80,1	159
	БНКС+(ПП+ММТ)	1	4,6	109,6	196
	БНКС+(ПП+ММТ)	3	4,74	110,0	204
70:30	БНКС+(ПП+ММТ)	5	4,78	110,5	208
	(БНКС+ ММТ)+ПП	1	4,82	107,0	185
	(БНКС+ ММТ)+ПП	3	5,0	108,4	219
	(БНКС+ ММТ)+ПП	5	4,94	118,8	191
	-	0	8,2	170	238
	БНКС+(ПП+ММТ)	1	8,8	285	336
	БНКС+(ПП+ММТ)	3	9,0	292	344
50:50	БНКС+(ПП+ММТ)	5	8,9	306	320
	(БНКС+ ММТ)+ПП	1	9,0	329	344
	(БНКС+ ММТ)+ПП	3	9,1	335	350
	(БНКС+ ММТ)+ПП	5	8,9	359	326

1	2	3	4	5	6				
	Композиции с БП-ДАХ								
	_	0	4,0	80,1	158				
	БНКС+(ПП+ БП–ДАХ)	1	4,0	91	140				
	БНКС+(ПП+ БП–ДАХ)	3	4,2	96	176				
	БНКС+(ПП+ БП-ДАХ)	5	4,1	99	148				
70:30	БНКС+(ПП+ БП-ДАХ)	7	3,8	65	176				
	(БНКС+ БП–ДАХ)+ПП	1	4,6	102	202				
	(БНКС+ БП–ДАХ)+ПП	3	4,4	102	198				
	(БНКС+ БП–ДАХ)+ПП	5	4,3	100	184				
	(БНКС+ БП–ДАХ)+ПП	7	3,9	74	208				
	Композиции с Б	П–Катамин А	Б						
		0	4,0	80,1	158				
	БНКС+(ПП+ БП–КАБ)	1	4,0	91	123				
	БНКС+(ПП+ БП–КАБ)	3	4,1	94	142				
	БНКС+(ІПІ+ БП–КАБ)	5	3,9	71	164				
70:30	БНКС+(ПП+ БП–КАБ)	7	3,9	57	164				
	(БНКС+ БП–КАБ)+ПП	1	4,0	94	154				
	(БНКС+ БП–КАБ)+ПП	3	4,2	95	146				
	(БНКС+ БП–КАБ)+ПП	5	4,2	80	174				
:	(БНКС+ БП–КАБ)+ПП	7	4,0	58	210				

По сравнению с ненаполненным ДТЭП, величина модуля упругости E возрастает в 1,94-2,11 раза, прочность при растяжении σ – в 1,09÷1,11 раза и величина относительного удлинения при разрыве ε – в 1,37÷1,47 раза.

При введении в ДТЭП отечественного монтмориллонита БП-ДАХ также наблюдается улучшение деформационно-прочностных характеристик наполненного композита при введении наполнителя в каучук.

Так, модуль упругости увеличивается в 1,25-1,27 раза, прочность при разрыве — 1,08 — 1,15 раза, а относительное удлинение — 1,16 — 1,28 раза. Применение в ДТЭП монтмориллонита, модифицированного Катамином АБ, незначительно повышает физико-механические характеристики наполненного композита.

Для установления структуры композитов были проведены рентгеноструктурные исследования ДТЭП на дифрактометре D8 ADVANCE. Установлено, что в ДТЭП, полученных путем введения слоистого силиката в расплав полимера происходит сдвиг базальных рефлексов слоистого силиката в область меньших углов, что указывает на раздвижение слоев в результате внедрения полимерных молекул (табл. 4). Причем в ДТЭП, полученных при введении БП-катамин АБ в каучук БНКС-18, этот сдвиг более существенен, чем при введении в ПП. Необходимо также отметить, что в образцах ДТЭП на

основе ММТ, добавленного в БНКС-18, на дифрактограммах отсутствует пик, соответствующий ММТ, что свидетельствует об эксфолиации частиц наполнителя ММТ Cloisite 15A.

Таблица 4 – Изменение межслоевых расстояний в наполнителях после их смешения с БНКС-18 и ПП

Наполнитель, 1 мас.ч.		евое рас- глине d, нм	Межслоевое расстояние в глине после смешения в расплаве полимера d, нм		
	исходное	модифиц.	БНКС-18	ПП	
MMT Cloisite 15A	1,17	3,1	Эксфолиация силикатных пластин	3,5	
БП-Катамин АБ	1,15	1,95	2,5	2,2	

Равномерность распределения ММТ Cloisite 15A по толщине образца была подтверждена данными элементного анализа среза композитов на растровом сканирующем электронном микроскопе XL-30 Philips с энергодисперсионной приставкой EDAX для микрозондового анализа.

Поскольку ДТЭП на основе БНКС предназначены для работы в условиях воздействия масел, топлив, смазок и т.п., было изучено влияние органоглин на устойчивость композитов к действию агрессивных сред. Были определены степень набухания в бензине АИ-92 и моторном масле при различных температурах и степень изменения деформационно-прочностных свойств материалов после набухания (табл. 5 и 6).

Введение ММТ Cloisite 15A и глин Березовского месторождения существенно на 20-63% уменьшает степень набухания полученных композитов в бензине АИ-92 и моторном масле (табл. 5). Для наполненных ДТЭП, полученных при соотношении БНКС-18:ПП = 50:50 снижение степени набухания в этих углеводородах составило 10-40%.

В табл. 6 приведены значения коэффициентов стойкости к действию агрессивных сред по изменению прочности при разрыве после набухания. Как видно из таблицы, образцы ДТЭП, содержащие модифицированные глины, более стойкие к действию агрессивных сред, чем ненаполненные ДТЭП. Повышение коэффициентов стойкости к действию моторного масла при температурах 70 и 125°С можно объяснить как за счет довулканизации эластомерной фазы, так и за счет повышения термостойкости композита при введении слоистых силикатов. Аналогичные результаты были получены для композитов ДТЭП-БП-КАБ и ДТЭП-БП-ДАХ.

Таблица 5 – Степень набухания ДТЭП, наполненных органоглинами, в агрессивных средах и при различных температурах

Агрессивная	Темпера- Содержание		Степень набухания композита, %			
среда	тура, °С	наполнителя, мас.ч.	ДТЭП- ММТ	ДТЭП- БП-ДАХ	ДТЭП- БП-КАБ	
		Соотношение	БНКС-18:ПІ			
		0	15,0	15	15	
Ганалия		1	5,8/8,0*	11/12	10/10	
Бензин АИ-92	23	3	5,6/7,6	8,0/9	13/11	
AY1-92		5	6,9/6,0	12/11	13/10	
		7	_	13,5/12	13/13	
	23	0	6,0	6	. 6	
1		1	3,8/3,1	3/2,4	3/2,4	
		3	3,4/3,1	3,5/2,9	3/2,7	
İ		5	3,1/3,0	3,7/4,0	2,5/3,4	
		7	_	3,0/3,5	2,4/2,4	
Ţ		0	27	27	27	
Manager		1	16/16	19/17	18,4/20	
Моторное масло	70	3	15/16	18,4/18,5	18/20	
масло		5	14/15	19/19	18/20	
. 1		7	-	18,7/18,5	17,6/19	
Γ		0	34	34	34	
1		1	19/21	24/22	24/25	
į	125	3	20/21	22/22	22/24	
		5	22/23	23/23	22/23	
		7	-	23/23	24/24	

^{*} здесь и далее в числителе приведено значение для образцов, полученных при введении наполнителя в ПП, а в знаменателе – при введении наполнителя в БНКС-18; аналогично – в табл. 7 и 8).

Таблица 6 – Коэффициенты стойкости ДТЭП к набуханию в бензине, моторном масле при различных температурах

Соот-	Последователь-	Содер	Коэффициент стойкости, К			
ношение БНКС-	ность введения ММТ	жание	Бензин А-92	Моторное масло		сло
18:ПП		ММТ, мас.ч.	23°C	23°C	70°C	125°C
		0	0,92	0,90	0,36	0,33
	БНКС+(ПП+ММТ)	1	1,02	1,02	0,38	0,37
	БНКС+(ПП+ММТ)	3	1,02	1,01	0,40	0,35
70:30	БНКС+(ПП+ММТ)	5	1,05	1,01	0,42	0,38
	(БНКС+ММТ)+ПП	1	1,02	1,04	0,45	0,46
	(БНКС+ММТ)+ПП	3	1,06	1,07	0,50	0,41
	(БНКС+ ММТ)+ПП	5	1,05	1,06	0,54	0,45
		0	0,97	0,95	0,60	0,55
	БНКС+(ПП+ММТ)	1	1,00	0,95	0,60	0,46
	БНКС+(ПП+ММТ)	3	1,00	1,00	0,70	0,70
50:50	БНКС+(ПП+ММТ)	5	0,98	1,05	0,75	0,70
	(БНКС+ ММТ)+ПП	1	1,06	1,20	0,70	0,68
i	(БНКС+ ММТ)+ПП	3	1,04	1,01	0,88	0,85
	(БНКС+ ММТ)+ПП	5	1,03	1,00	0.90	0,70

Было проведено также термостарение образцов при 70°C и 125°C в течение 72 ч (табл. 7).

Как следует из данных табл. 7, дисперсно-наполненные ДТЭП имеют более высокие физико-механические показатели после старения по сравнению с ненаполненными ДТЭП, как для БНКС-18:ПП = 70:30, так и БНКС-18:ПП= 50:50.

Для оценки влияния органоглин на термические свойства композитов были проведены исследования на синхронном термоанализаторе STA 409 РС фирмы NETZSCH (табл. 8).

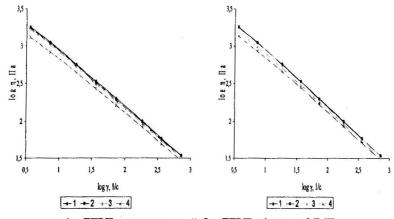
Таблица 7 – Результаты термостарения ДТЭП (время старении 72 ч)

Температура	Содержание	E,	σ,	ε,
старения, °С	наполнителя, мас.ч.	МПа	МПа	%
	БНКС-18: $\Pi\Pi$ = 70:30, М	MMT Cloisite 15		
	0	84	3,7	142
70	11	86/98,5	4,1/4,5	194/194
	3	93,0/94	4,3/4,6	192/228
	5	98,8/106,6	4,3/4,6	180/214
,	0	82,4	4,2	152
	1	90,5/91	5,1/5,1	210/250
125	3	91/97,4	5,0/5,4	192/220
	5	98/102,6	4,8/5,3	166/204
1100	БНКС- 18 :ПП = $70:30$,	БП-Катамин А	5	
	0	84	3,7	142
	1	88/97,6	3,6/4,3	136/204
70	3	92,5/93,8	3,9/4,1	152/208
	5	81,9/83,9	3,6/3,9	162/182
	7	77,2/78,2	3,9/4,0	178/210
· · · · · · · · · · · · · · · · · · ·	0	82,4	4,2	152
	1	79/86,2	4,2/5,1	134/212
125	3	81/88,5	4,6/5,0	170/232
	5	77/83	4,2/4,5	202/204
	7	77/82	4,5/4,6	212/218
	БНКС-18:ПП = 70:	30, БП-ДАХ		
	0	84	3,7	142
	1	85,0/86,8	3,1/3,8	148/158
70	3	88,0/90,7	3,8/3,9	146/156
	5	85,0/88,8	3,5/4,7	110/140
	7	81,0/83,0	3,7/4,4	164/172
	0	82,4	4,2	152
	1	81,0/87,0	4,0/4,4	108/163
125	3	87,7/88,0	4,1/4,6	126/166
	5	83,0/76,0	3,8/4,3	130/164
	7	78,7/80,0	4,3/4,4	140/186
	БНКС-18:ПП= 50:50, М			
	0	242	7,9	248
70	1	274/278	8,3/8,3	255/344
70	3	270/274	8,0/8,3	236/309
	5	271/275	7,9/8,0	239/314
	0	267	8,9	278
125	1	250/272,6	8,6/8,8	248/273
	3	245/266,8	8,5/8,5	235/258
	5	245/265	8,3/8,4	228/248

Таблица 8 – Термическое поведение образцов ДТЭП (БНКС-18:ПП = 70:30), наполненных различными органоглинами

Содержание наполните-	Температура начала деструкции, °С			Потеря массы при 400 °C, %			
ля, мас.ч.	дтэп-	дтэп-	дтэп-	дтэп-	ДТЭП-	дтэп-	
	MMT	БП-ДАХ	БП-КАБ	MMT	БП-ДАХ	БП-КАБ	
0	269			59,5			
1	327/350	320/330	329/331	55,3/50,5	47,5/49,2	46,0/50,2	
3	314/343	311/321	334/328	54,8/40,4	51,1/51,1	44,3/49,2	
5	320/340	317/321	328/324	52,5/36,0	50,5/49,8	36,6/48,9	
7	_	320/323	329/333	_	41,5/45,5	43,1/33,0	

Как следует из данных табл. 8, модификация ДТЭП слоистыми силикатами повышает температуру начала деструкции и снижает потерю массы при высокотемпературном нагреве. Введение в ДТЭП слоистого силиката при равном соотношении БНКС-18 и ПП также сопровождается повышением на 30°С температуры начала деструкции.


Следовательно, получаются более термостабильные композиты, что и проявлялось в приведенных выше результатах исследований.

Минеральные наполнители, как правило повышают огнестойкость материалов при введении в достаточно больших количествах. Поэтому нами была оценена огнестойкость композитов, содержащих 1 мас. ч. органоглин. Испытания были проведены в ФГУ «Чебоксарское ПО им. В.И. Чапаева» и показали, что скорость горения образцов ДТЭП-ММТ и ДТЭП-БП-КАБ меньше на 30% и 10%, соответственно, по сравнению с исходным ненаполненным ДТЭП.

Для оценки технологических свойств разработанных композиций были изучены вязкоупругие и упруго-гистерезисные свойства на вискозиметре МРТ Монсанто и динамическом реометре RPA 2000. На рис. 2 приведены кривые зависимости вязкости от скорости сдвига для ДТЭП, наполненных ММТ Cloisite 15A при температуре 210°C, соответствующей температуре переработки ДТЭП в изделие.

Вид кривых течения не зависит от способа ввода наполнителя (в каучук или в ПП), а введение наполнителя при любом содержании (1-5 мас. ч.) сопровождается снижением вязкости. Аналогичное поведение наблюдается и при введении отечественных наполнителей.

Следовательно, введение модифицированных глин в количестве от 1 до 7 мас. ч. не приведет к повышению вязкости расплава ДТЭП и не усложнит процесс переработки таких композитов.

1 - ДТЭП не наполненный; 2 - ДТЭП с 1 мас. ч. ММТ; 3 - ДТЭП с 3 мас. ч. ММТ; 4 - ДТЭП с 5 мас. ч. ММТ

Рисунок 2 — Зависимость вязкости от скорости сдвига при 210° С для ДТЭП, наполненных: a — Cloisite 15A в каучуке; δ — Cloisite 15A в ПП

Таким образом, в результате проведенных исследований были разработаны динамические термоэластопласты на основе ПП и БНКС, наполненные импортными или отечественными органоглинами, с улучшенными свойствами, сравнимыми со свойствами известного зарубежного материала Geolast (табл. 9).

Таблица 9 – Сравнительные характеристики ДТЭП, наполненного 3 мас.ч. ММТ Cloisite 15A и ДТЭП марки Geolast

Наименование показателей	Разработан	ный ДТЭП	Geolast	Geolast
			701-70	701-80
Твердость по Шору А, усл.ед.	68	80	70	80
σ, МПа	5,0	9,1	5,5	8,0
ε, %	219,0	350,0	220	300
Е, МПа	108,4	335	_	_
Степень набухания при 23°C:				
бензин, %	7,6	9,8	7	_
масло, 23°С %	3,1	2,0		_
масло, 70°С %	16	15	18,8*	18,8*
Температура начала деструкции, °С	343	334		-
* степень набухания при 100°C				

ОСНОВНЫЕ ВЫВОДЫ

- 1. Впервые получены нанокомпозиционные материалы на основе динамически вулканизованных термоэластопластов, состоящих из полипропилена, бутадиен-нитрильного каучука и нанонаполнителя монтмориллонита Cloisite 15A (США) и монтмориллонитовой глины Березовского месторождения республика Татарстан, модифицированной ДАХ и Катамином АБ.
- 2. Изучена совместимость полипропилена и бутадиен-нитрильных каучуков и проведена оценка их совместимости с модифицированными слоистыми силикатами отечественного и зарубежного производства. Установлено, что наилучшим сродством к наполнителю, а следовательно, способностью интеркалироваться в межслоевое пространство органоглины и эксфолиироваться, обладает бутадиен-нитрильный каучук БНКС-18, что было подтверждено методом рентгеноструктурного анализа.
- 3. Определен порядок введения монтмориллонита в компоненты смеси полимеров, а именно, наилучшие свойства композиционного материала достигаются при введении нанонаполнителя в каучук.
- 4. На основании реологических исследований установлено, что введение 1-7 мас.ч. модифицированного монтмориллонита в расплав смеси полиолефина и эластомера не приводит к повышению вязкости расплава ДТЭП и не усложняет процесс переработки нанокомпозитов в изделие.
- 5. Разработанные композиты, содержащие 1-3 мас.ч. ММТ Cloisite 15A и 3-5 мас.ч. монтмориллонитов Березовского месторождения, характеризуются в сравнении с ненаполненным ДТЭП существенным улучшением комплекса свойств, а именно:
- увеличиваются деформационно-прочностные характеристики: модуль упругости в 1,25-2,1 раза, прочность при разрыве в 1,1 раза, относительное удлинение при разрыве 1,16-1,47 раза;
- повышается термостабильность: увеличивается температура начала деструкции на $40\text{--}80^{\circ}\text{C}$, уменьшается потеря массы на 10-25%, снижается скорость горения материала на 10-30%, возрастает маслобензостойкость на 35--40%.
- 6. Выпущена опытная партия разработанного материала, который успешно прошел лабораторные испытания и рекомендован к внедрению в производство.

Публикации в изданиях, рекомендованных ВАК для размещения материалов диссертаций

1. Вольфсон, С.И. Изучение влияния органоглины на свойства динамических термоэластопластов/ С.И. Вольфсон, А.И. Нигматуллина, Р.К.Сабиров, Т.З. Лы-

- гина, Н.И. Наумкина, А.М. Губайдуллина// Журнал прикладной химии. 2010 т. 83, Вып. 1 С. 126-129.
- 2. Нигматуллина, А.И. Оценка совместимости наночастиц органоглины с компонентами динамических термоэластопластов на основе полипропилена и бутадиен-нитрильных каучуков/ А.И. Нигматуллина, С.И. Вольфсон, Н.А. Охотина, С.В. Крылова// Вестник Казанского технологического университета 2009 № 6 С. 204-207.
- 3. Вольфсон, С.И. Динамические термоэластопласты, модифицированные монтмориллонитом/ С.И. Вольфсон, Н.А. Охотина, <u>А.И. Нигматуллина</u>, Р.К.Сабиров, В.В. Власов, Л.В. Трофимов// Каучук и резина 2010 № 3 С. 11-14.
- 4. Вольфсон, С.И. Нанокомпозиты на основе полибутена-1/ С.И. Вольфсон, Г.Х Идиятуллина, Р.К. Сабиров, Н.А. Охотина, А.И. Нигматуллина// Вестник Казанского технологического университета 2009 № 6 С. 160-167.
- 5. Нигматуллина, А.И. Свойства динамических термоэластопластов, содержащих модифицированный полипропилен и слоистый наполнитель/ А.И. Нигматуллина, С.И. Вольфсон, Н.А. Охотина, М.С. Шалдыбина// Вестник Казанского технологического университета 2010 № 9 С. 329-333.
- 6. Вольфсон, С.И. Изучение структуры и морфологии полибутена-1, модифицированного монтмориллонитом/ С.И. Вольфсон, Г.Х. Идиятуллина, Р.К.Сабиров, Н.А. Охотина, <u>А.И. Нигматуллина</u>// Вестник Казанского технологического университета 2010 № 9 С. 313-317.

Научные статьи и материалы конференций

- 1.Volfson, S. Dynamically vulcanized thermoelastoplastics based on butadieneacrylonitrile rubber and polypropylene modified nanofiller/ S. Volfson, <u>A. Nigmatullina</u>, N. Okhotina, R. Sabirov, E. Gotlib // Scientific Israel Polymer Advantages. 2010,V. 4. P. 72-80.
- 2. Нигматуллина, А.И. Динамически вулканизованные термоэластопласты, модифицированные слоистым нанонаполнителем/ А.И. Нигматуллина, С.И. Вольфсон, Н.А. Охотина, Р.К.Сабиров// Современные наукоемкие технологии. М.: Академия Естествознания, 2010, №4, С. 64-65.
- 3. Нигматуллина, А.И. Использование слоистых наполнителей в динамических термоэластопластах/ А.И. Нигматуллина, С.И. Вольфсон, Н.А. Охотина, Л.Ю. Закирова, Э.Н. Шарипов, А.П. Савельчев, М.Ф. Ильязов// 24 международная научно-практическая конференция. «Резиновая промышленность. Сырье. Материалы. Технология 2008». Тезисы докладов Москва, 2008 С.144.
- 4. Вольфсон, С.И. Динамические термоэластопласты на основе бутадиеннитрильного каучука и полипропилена, модифицированные нанонаполнителем/ С.И. Вольфсон, А.И. Нигматуллина, Н.А. Охотина, Р.К. Сабиров, Е.М. Готлиб// Материалы Международного симпозиума «Наноматериалы для защиты промышленных и подземных конструкций», 2010, Усть-Каменогорск, С. 193-197.
- 5. Нигматуллина, А.И. Изучение влияния органоглины на свойства динамических термоэластопластов/ А.И. Нигматуллина, С.И. Вольфсон, Н.А. Охотина,

- Р.К. Сабиров// 4 Всероссийская научная конференция «Физикохимия процессов переработки полимеров» Тезисы докладов – Иваново, 2009 – С.170.
- 6. Вольфсон, С.И. Получение, структура, свойства динамических термоэластопластов, модифицированных нанонаполнителем/ С.И. Вольфсон, А.И. Нигматуллина, Н.А. Охотина, Р.К.Сабиров, Т.З. Лыгина// Вторая Всесоюзная научнотехническая конференция «Каучук и резина 2010»: Тез. докл. - М., 2010-С.245.
- 7. Нигматуллина, А.И. Маслобензостойкие динамические термоэластопласты, молифицированные органоглиной: получение, структура, А.И. Нигматуллина, С.И. Вольфсон, Н.А. Охотина, Р.К.Сабиров, М.Е. Шалдыбина, Т.З. Лыгина// Пятая Всероссийская Каргинская конференция «Полимеры --2010» Сборник тезисов – Москва, 2010. – с.303.
- 8. Нигматуллина, А.И. Влияние монтмориллонита на свойства динамических термоэластопластов/ А.И. Нигматуллина, А.В.Ужегов, Д.А. Ведяшкина, С.И. Вольфсон, Н.А. Охотина// 12 международная конференция студентов и аспирантов «Синтез, исследование свойств, модификация и переработка ВМС» - 4 Кирпичниковские чтения. Тезисы докладов – 2008. С.131.
- 9. Нигматуллина, А.И. Динамические термоэластопласты, модифицированные наноглинами/ А.И. Нигматуллина, А.В.Ужегов, С.И. Вольфсон, Н.А. Охотина// 12 международная конференция студентов и аспирантов «Синтез, исследование свойств, модификация и переработка ВМС» - 4 Кирпичниковские чтения. Тезисы докладов - 2008, С.140 -141.
- 10. Нигматуллина, А.И Динамические термоэластопласты, модифицированные органоглинами: получение, структура, свойства.// А.И. Нигматуллина, И.Ю. Акберов, С.И. Вольфсон, Н.А. Охотина// 13 международная конференция студентов и аспирантов «Синтез, исследование свойств, модификация и переработка ВМС» - 5 Кирпичниковские чтения. Тезисы докладов - Казань: Издательство КГТУ, 2009, С.261.
- 11. Нигматуллина, А.И. Определение адгезионной способности компонентов линамических термоэластопластов расчетным методом/ А.И. Нигматуллина, А.А. Андреев, Р.Ф. Шайхутдинов, Н.А. Охотина// 13 международная конференция студентов и аспирантов «Синтез, исследование свойств, модификация и переработка ВМС» - 5 Кирпичниковские чтения. Тезисы докладов - Казань: Издательство КГТУ, 2009, С.293.
- 12. Нигматуллина, А.И. Оценка полярности компонентов динамических термоэластопластов, наполненных наноглиной// А.И. Нигматуллина, Д.С. Симакова, М.Е. Шалдыбина, С.И. Вольфсон, Н.А. Охотина// 13 международная конференция студентов и аспирантов «Синтез, исследование свойств, модификация и переработка ВМС» - 5 Кирпичниковские чтения. Тезисы докладов - Казань: Издательство КГТУ, 2009, С.302.

Соискатель

А.И. Нигматуллина

Заказ № 301

Тираж 80 экз