Образование антител у северного оленя, инфицированного Mycobacterium bovis

Эдуард Аркадьевич Шуралев, к.в.н., доцент кафедры, eduard.shuralev@mail.ru

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Мультиплексным иммуноферментным анализом с хемилюминесцентной меткой определили значение микобактериальных антигенов для диагностики туберкулеза северных оленей. Установили, что мажорными иммуногенами *М. bovis* для северного оленя являются MPB70, MPB83 и PPD-b. Титры антител к ранним секретируемым антигенам бактерии (Rv3616c, ESAT-6 и CFP-10) по мере развития инфекции претерпевают периодические колебания. В отдаленные сроки после заражения *М. bovis* туберкулиновая реакция провоцирует выработку специфических антител.

Ключевые слова: антигены, антитела, микобактерии, мультиплексный иммуноферментный анализ, туберкулез.

Antibody response on Mycobacterium bovis infected reindeer

E.A. Shuralev

Using multiplex immunoassay the significance of mycobacterial antigens for diagnosis of reindeer tuberculosis determined. It was established that majeure antigens are MPB70, MPB83 and PPD-b. After the skin test at the later stages of infection the antibody production is activated.

Key words: antigens, antibodies, mycobacteria, multiplex immunoassay, tuberculosis.

В последние годы наметился прорыв в области серологической диагностики туберкулеза [10, 12]. Результаты проведенных ранее исследований [1] указывают на перспективы использования более 70 рекомбинантных белков и синтетических пептидов для диагностики туберкулеза крупного рогатого скота [4] и других видов животных, в том числе барсука [6], кабана [2], альпаки [7], вапити [3] и др.

Разные виды семейства Оленевых являются резервуаром возбудителя туберкулеза бычьего вида *Мусоbacterium bovis* в природе, а разводимые в хозяйствах составляют популяцию риска [5]. Проблема прижизненной серологической диагностики туберкулеза у них актуальна для многих стран [8, 11]. Северный олень (*Rangifer tarandus*), распространенный в северной части Евразии и Северной Америки, где его называют карибу, как и другие представители семейства подвержен риску заражения туберкулезом, что зачастую проявляется бактерионосительством. Туберкулиновая проба не всегда эффективна, что диктует необходимость поиска более точного прижизненного теста диагностики туберкулеза.

CervidTB STAT-PAK (ChemBio Diagnostic Systems, США) — высокоэффективный диагностикум с чувствительностью 75-96% и специфичностью 60-100% [9].

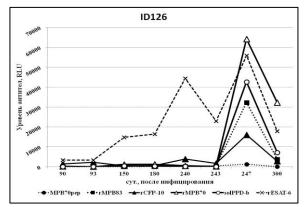
Цель работы — определить диагностическую значимость микобактериальных антигенов для выявления инфицированных *M. bovis* северных оленей.

Материалы и методы. Исследования провели в серологической лаборатории компании Enfer Scientific (Ирландия) согласно договору о сотрудничестве с Институтом экологии и природопользования (г. Казань).

Специалисты из USDA предоставили следующие образцы сыворотки крови: от 4 интактных не инфицированных $M.\ bovis$ северных оленей; от 11 карибу, экспериментально зараженных штаммом 1315 $M.\ bovis$, интратонзилярно в дозе $10^5\ \mathrm{KOE}$ (пробы крови у них брали периодически в течение года); от 13 северных оленей из 2 благополучных по туберкулезу территорий.

Антитела к различным антигенам *M. bovis* (MPB70рер, rMPB83, CFP-10рер, rCFP-10, rMPB70, ESAT-6рер, rRv3616c, solPPD-b, rESAT-6) выявляли, используя мультиплексный формат иммуноферментного анализа с хемилюминесцентной меткой, который проводили по описанной ранее методике [5], оценивая титр антител в относительных световых единицах RLU.

Результаты исследований и обсуждение. При тестировании сыворотки крови 13 северных оленей из благополучных по туберкулезу территорий в мультиплексном иммуноферментном анализе только в 2 случаях зарегистрировали слабо положительную реакцию на наличие антител к ранним секретируемым антигенам ESAT-6 и CFP-10, не более 1500 и 3000 RLU соответственно. Превышения фонового значения (500 RLU) реактогенности сывороток с антигеном Rv3616с не обнаружили ни у одного животного. У 3 оленей установили диагностически значимые уровни сигналов обнаружения антител к антигенам жизненного цикла *М. bovis:* у 2 к MPB70 и у 1 к MPB83 (максимальная интенсивность реакции не превышала 2500 RLU). Только в 1 сыворотке отметили превышение порога фонового значения (500 RLU) к антигенному комплексу PPD-b. Полученные результаты указывают на отсутствие неспецифических реакций сыворотки крови северных оленей к исследуемым антигенам.


У интактных животных контрольной группы следовые значения сигналов к исследуемым антигенам в течение всего периода наблюдения не превышали 2500 RLU (в большинстве случаев они были ниже фонового значения — 500 RLU). Внутрикожная туберкулиновая проба, которую провели дважды (на 90-й и 240-й дни эксперимента), не вызывала в течение 3 — 7 дней повышения уровня специфических сывороточных антител.

Сероконверсия к антигенам *М. bovis* у экспериментально зараженных оленей проявлялась неодинаково (см. таблицу). По аналогии с результатами опытов, проведенных на других видах животных [1, 2, 4, 5, 7], можно предположить, что причиной этого послужили индивидуальные особенности течения инфекционного процесса при туберкулезе. У большинства оленей обнаружили антитела к антигенам MPB70, MPB83 и PPD-b, которые выступают как мажорные для данного вида животных. Антитела к другим (минорным) антигенам выявили только у части инфицированных животных. Тем не менее, как показали проведенные на других видах животных исследования, их детекция облегчает диагностику разных стадий инфекции.

 Таблица 1. Частота обнаружения антител к антигенам M. bovis у северных оленей в динамике

 экспериментальной инфекции

Антиген -	Срок после заражения, сут				
	90	150	180	240	300
MPB70pep	0	0	0	4	1
rMPB83	0	1	1	9	9
CFP-10pep	0	0	0	1	0
rCFP-10	1	0	0	2	2
rMPB70	3	6	7	10	10
ESAT-6pep	0	0	0	2	0
rRv3616c	0	0	0	0	0
solPPD-b	0	0	1	9	9
rESAT-6	1	2	2	5	4

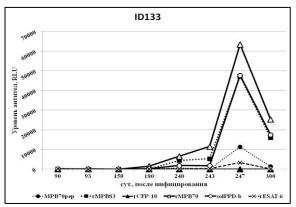


Рис. 1. Образование антител к разным антигенам *M. bovis* у 2 (№126; №133) экспериментально зараженных карибу

На рисунке показана динамика образования специфических антител по мере развития туберкулезной инфекции у 2 экспериментально зараженных *M. bovis* северных оленей (№ 126 и 133).

Анализ этих данных подтверждает значимость комплексной серологической диагностики туберкулеза, основанной на выявлении нескольких антител возбудителя. Эту задачу облегчает применение мультиплексного иммуноферментного анализа, позволяющего одновременно выявлять антитела к разным антигенам.

Необходимо отметить тот факт, что туберкулиновая реакция в поздние сроки инфекционного процесса активизировала выработку специфических антител к антигенам MPB70, MPB83 и PPD-b, что проявилось резким подъемом их титра на 7-е сутки после введения животным аллергена.

Заключение. Установлена высокая диагностическая значимость сероконверсии северных оленей к антигенам MPB70, MPB83 и PPD-b *M. bovis*. Титры антител к ранним секретируемым антигенам бактерии (Rv3616c, ESAT-6 и CFP-10) по мере развития инфекции претерпевают периодические колебания. Туберкулиновая реакция провоцирует выработку специфических антител в отдаленные сроки после заражения *M. bovis*.

Литература

- 1. Шуралев Э.А., Ндайишимийе Э.В., Мукминов М.Н. К вопросу серологической диагностики туберкулеза крупного рогатого скота. Ученые записки КГАВМ им. Н.Э.Баумана. 2012; 211:202 206.
- 2. Шуралев Э.А. Сравнительный анализ тест-систем для диагностики туберкулеза у альпак. Ветеринарный врач. 2012; 5:30 33.
- 3. Шуралев Э.А. Микобактериальные антигены: синтетические пептиды и рекомбинантные белки. Ученые записки КГАВМ им. Н.Э. Баумана. 2013; 216; 403 407.
- 4. Шуралев Э.А., Мукминов М.Н., Валеева А.Р. и др. Мультиплексный ИФА с хемилюминесцентной меткой для диагностики туберкулеза у кабанов. Ветеринария. 2013; 2: 25 28.
- 5. Шуралев Э.А., Мукминов М.Н., Велан К., Кларк Дж. Выявление специфических антител у вапити при туберкулезе. Ветеринария. 2013; 8: 54 57.
- 6. Шуралев Э.А., Ндайишимийе Э.В., Мукминов М.Н. и др. Факторы риска и индикация *Mycobacterium bovis* на территориальном уровне. Ученые записки КГАВМ им. Н.Э.Баумана. 2013; 215: 367 371.
- 7. Шуралев Э.А. Предварительные результаты изучения антителогенеза у барсуков при экспериментальном туберкулезе. Ученые записки КГАВМ им. Н.Э.Баумана. 2015; 221:261 266.
- 8. Brook R.K., Wal E.V., van Beest F.M., McLachlan S.M. Evaluating use of cattle winter feeding areas by elk and white-tailed deer: implications for managing bovine tuberculosis transmission risk from the ground up. Prev. Vet. Med. 2013; 108(2-3):137-147.
- 9. Buddle B.M., Wilson T., Denis M. et al. Sensitivity, specificity, and confounding factors of novel serological tests used for the rapid diagnosis of bovine tuberculosis in farmed red deer (*Cervus elaphus*). Clin. Vaccine Immunol. 2010; 17(4): 626 630.
- 10. Harrington N.P., Surujballi O.P., Prescott J.F. et al. Antibody responses of cervids (*Cervus elaphus*) following experimental *Mycobacterium bovis* infection and the implications for immunodiagnosis. Clin. Vaccine Immunol. 2008; 15(11):1650 1658.
- 11. Walter W.D., Anderson C.W., Smith R. et al. On-farm mitigation of transmission of tuberculosis from white-tailed deer to cattle: literature review and recommendations. Vet. Med. Int. 2012; ID 616318.
- 12. Waters W.R., Stevens G.E., Schoenbaum M.A. et al. Bovine tuberculosis in a Nebraska Herd of farmed elk and fallow deer: a failure of the tuberculin skin test and opportunities for serodiagnosis. Vet. Med. Int. 2011; ID 953985.