Inequality for a Trace on a Unital C*-Algebra

A. M. Bikchentaev*

Kazan (Volga Region) Federal University, Kazan, Russia Received April 14, 2015

Abstract—A new inequality for a trace on a unital C^* -algebra is established. It is shown that the inequality obtained characterizes the traces in the class of all positive functionals on a unital C^* -algebra. A new criterion for the commutativity of unital C^* -algebras is proved.

DOI: 10.1134/S0001434616030214

Keywords: unital C*-algebra, positive functional, trace on a C*-algebra.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space over the field \mathbb{C} , and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . An operator $X \in \mathcal{B}(\mathcal{H})$ is said to be a *projection* if $X = X^2 = X^*$. By the *commutant* of the set $\mathcal{X} \subset \mathcal{B}(\mathcal{H})$ one means the set

$$\mathcal{X}' = \{ Y \in \mathcal{B}(\mathcal{H}) : XY = YX, X \in \mathcal{X} \}.$$

A *-subalgebra \mathcal{M} of $\mathcal{B}(\mathcal{H})$ is called a *von Neumann algebra* acting on the Hilbert space \mathcal{H} if $\mathcal{M} = \mathcal{M}''$. By a C^* -algebra one means a complex Banach *-algebra \mathcal{A} such that $||A^*A|| = ||A||^2$ for any $A \in \mathcal{A}$. Every C^* -algebra can be realized as a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (Gel'fand–Naimark; see [1, Theorem 3.4.1]). For a C^* -algebra \mathcal{A} , denote by \mathcal{A}^{sa} , \mathcal{A}^+ , and \mathcal{A}^{pr} the subsets of Hermitian elements, positive elements, and projections of \mathcal{A} , respectively. For a unital \mathcal{A} , let I be the unit of \mathcal{A} , and let $P^{\perp} = I - P$ for $P \in \mathcal{A}^{pr}$. A positive linear functional φ on a C^* -algebra \mathcal{A} is called a *state* if $||\varphi|| = 1$, and it is said to be *tracial* if $\varphi(X^*X) = \varphi(XX^*)$ for all $X \in \mathcal{A}$.

A positive linear functional φ on a von Neumann algebra \mathcal{M} is said to be *normal* if

$$X_i \nearrow X, \quad X_i, X \in \mathcal{M}^+, \implies \varphi(X) = \sup \varphi(X_i).$$

For $P, Q \in \mathcal{M}^{\mathrm{pr}}$ we write $P \sim Q$ (the *Murray–von Neumann* equivalence) if $P = U^*U$ and $Q = UU^*$ for some $U \in \mathcal{M}$.

By a *universal representation* of a C^* -algebra \mathcal{A} one means the pair

$$\{\pi,\mathfrak{H}\}=\sum_{arphi\in\mathcal{S}(\mathcal{A})}^{\oplus}\{\pi_{arphi},\mathfrak{H}_{arphi}\},$$

where $S(\mathcal{A})$ is the set of all states on \mathcal{A} and $(\pi_{\varphi}, \mathfrak{H}_{\varphi})$ is the Gel'fand–Naimark–Segal representation of the C^* -algebra \mathcal{A} associated with φ . In this case, the von Neumann algebra $\mathcal{M} = \pi(\mathcal{A})''$ generated by $\pi(\mathcal{A})$ is referred to as the *universal enveloping von Neumann algebra* of the C^* -algebra \mathcal{A} [2, Chap. III, Definition 2.3].

Let φ be a positive linear functional on a C^* -algebra \mathcal{A} , and let π be the universal representation of \mathcal{A} . It follows from the construction of π that an arbitrary state on \mathcal{A} becomes a vector state on $\pi(\mathcal{A})$ and, therefore, can be extended to a normal state on the universal enveloping algebra $\mathcal{M} = \pi(\mathcal{A})''$. Therefore, for φ , there is a positive normal functional $\widehat{\varphi}$ on the universal enveloping von Neumann algebra such that

$$\widehat{\varphi}(\pi(\mathcal{A})) = \varphi(\mathcal{A}), \qquad A \in \mathcal{A}^+.$$

^{*}E-mail: Airat.Bikchentaev@kpfu.ru