On Normal τ -Measurable Operators Affiliated with Semifinite Von Neumann Algebras

A. M. Bikchentaev^{*}

Kazan Federal University, Kazan, Russia Received May 27, 2013

Abstract—Let τ be a faithful normal semifinite trace on the von Neumann algebra $\mathcal{M}, 1 \ge q > 0$. The following generalizations of problems 163 and 139 from the book [1] to τ -measurable operators are obtained; it is established that: 1) each τ -compact q-hyponormal operator is normal; 2) if a τ -measurable operator A is normal and, for some natural number n, the operator A^n is τ -compact, then the operator A is also τ -compact. It is proved that if a τ -measurable operator A is hyponormal and the operator A^2 is τ -compact, then the operator A is also τ -compact. A new property of a nonincreasing rearrangement of the product of hyponormal and cohyponormal τ -measurable operators is established. For normal τ -measurable operators A and B, it is shown that the nonincreasing rearrangements of the operators AB and BA coincide. Applications of the results obtained to F-normed symmetric spaces on (\mathcal{M}, τ) are considered.

DOI: 10.1134/S0001434614090053

Keywords: semifinite von Neumann algebra, faithful normal semifinite trace, τ -measurable operator, hyponormal operator, cohyponormal operator, τ -compact operator, nilpotent, quasinilpotent, F-normed symmetric space.

INTRODUCTION

Let τ be a faithful normal semifinite trace on the von Neumann algebra \mathcal{M} , let \mathcal{M} be the *-algebra of all τ -measurable operators, and let $1 \ge q > 0$. In this paper, the following generalizations of problems 163 and 139 from the Halmos book [1] to τ -measurable operators are obtained; it is established that:

- (1) each τ -compact q-hyponormal operator is normal (Theorem 2.2);
- (2) if an operator $A \in \mathcal{M}$ is normal and, for some natural number *n*, the operator A^n is τ -compact, then the operator *A* is τ -compact (item (i) of Corollary 3.2).

The proof of Theorem 2.2 is based on a deep result from [2]. It is shown by us that if the operator $A \in \widetilde{\mathcal{M}}$ is hyponormal and the operator A^2 is τ -compact, then the operator A is also τ -compact (item (i) of Corollary 3.4). We establish the new property of the nonincreasing rearrangement of the product of the hyponormal and cohyponormal τ -measurable operators (Theorem 3.5). For normal operators $A, B \in \widetilde{\mathcal{M}}$, it is shown that the nonincreasing rearrangements of the operators AB and BA coincide (Corollary 3.6). A well-known rearrangement property (see item (6) of Lemma 1.1) implies that a nonnegative operator $A \in \widetilde{\mathcal{M}}$ is τ -compact if and only if A^p is τ -compact for all p > 0. It is shown in Theorem 4.1 that a similar assertion also holds for the product of nonnegative operators $A, B \in \widetilde{\mathcal{M}}$: the τ -compactness of AB is equivalent to the τ -compactness of the operators $A^p B^r$ for all p, r > 0. The results obtained are applied to F-normed symmetric spaces on (\mathcal{M}, τ) .

^{*}E-mail: Airat.Bikchentaev@kpfu.ru