ON ADDITIVITY OF MAPPINGS ON MEASURABLE FUNCTIONS

A. M. Bikchentaev

Abstract

We prove the additivity of regular l-additive mappings $T: \mathscr{K} \rightarrow[0,+\infty]$ of a hereditary cone \mathscr{K} in the space of measurable functions on a measure space. Some examples are constructed of non- d-additive l-additive mappings T. The monotonicity of l-additive mappings $T: \mathscr{K} \rightarrow[0,+\infty]$ is established. The examples are constructed of nonmonotone d-additive mappings T.

Let $(S,+)$ be a commutative cancellation semigroup. Given a mapping $T: \mathscr{K} \rightarrow S$, we prove the equivalence of additivity and l-additivity. It is shown that a strongly regular 2 -homogeneous l-subadditive mapping T is subadditive. All results are new even in case $\mathscr{K}=L_{\infty}^{+}$.

DOI: 10.1134/S0037446614010029
Keywords: measure space, measurable function, additive mapping, cone, weight, monotone mapping, cancellation semigroup, vector lattice

Introduction

Let $(\Omega, \mathfrak{A}, \mu)$ be a measure space and let $\mathfrak{M}=\mathfrak{M}(\Omega, \mathfrak{A}, \mu)$ be the vector space (of the cosets) of measurable functions $f: \Omega \rightarrow \mathbb{R}$. Given $f, g \in \mathfrak{M}$, put $f g=0$ if $\mu\{\omega \in \Omega: f(\omega) g(\omega) \neq 0\}=0$.

Let \mathscr{E} be a vector subspace of \mathfrak{M}. A functional $F: \mathscr{E} \rightarrow \mathbb{R}$ is called disjointly additive if from $f, g \in \mathscr{E}$ and $f g=0$ it follows that $F(f+g)=F(f)+F(g)$. The integral representations for these functionals were obtained in $[1-6]$ under extra conditions.

In integration theory, some important role is played by unbounded mappings $T: L_{\infty}^{+} \rightarrow[0,+\infty]$. For a localizable measure space (see [7]) for normal homogeneous additive T and for normal monotone homogeneous subadditive T (see [8]), the representations were obtained via bounded linear functionals on L_{∞}.

Suppose that \mathscr{K} is a hereditary cone in \mathfrak{M}^{+}; i.e., (1) $\lambda \in \mathbb{R}^{+}, f \in \mathscr{K} \Rightarrow \lambda f \in \mathscr{K} ;(2) f, g \in \mathscr{K} \Rightarrow$ $f+g \in \mathscr{K}$; and (3) $f \in \mathscr{K}, g \in \mathfrak{M}^{+}$and $g \leq f \Rightarrow g \in \mathscr{K}$. Given $f, g \in \mathscr{K}$, define $f \vee g$ and $f \wedge g$ as

$$
(f \vee g)(\omega)=\max \{f(\omega), g(\omega)\}, \quad(f \wedge g)(\omega)=\min \{f(\omega), g(\omega)\} \quad(\omega \in \Omega)
$$

respectively. We have $f \vee g, f \wedge g \in \mathscr{K}$ and

$$
\begin{equation*}
f \vee g+f \wedge g=f+g \tag{1}
\end{equation*}
$$

A mapping $T: \mathscr{K} \rightarrow[0,+\infty]$ is called l-additive (i.e., lattice-additive) if

$$
T(f \vee g)+T(f \wedge g)=T(f+g) \quad \text { for all } f, g \in \mathscr{K} ;
$$

it is called additive if $T(f+g)=T(f)+T(g)$ for all $f, g \in \mathscr{K}$. By (1), every additive mapping is l-additive.

In this article we prove the additivity of regular l-additive mappings $T: \mathscr{K} \rightarrow[0,+\infty]$ (Theorem 2.1). We construct the examples of non- d-additive l-additive mappings T (Example 2.1). In Theorem 2.2, we establish the monotonicity of l-additive mappings $T: \mathscr{K} \rightarrow[0,+\infty]$. Example 2.1 shows the existence of nonmonotone d-additive mappings T.

Let $(S,+)$ be a commutative cancellation semigroup. We prove the equivalence of additivity and l-additivity for a mapping $T: \mathscr{K} \rightarrow S$ (Theorem 2.3).

[^0]
[^0]: Kazan. Translated from Sibirskǐ Matematicheskǐ Zhurnal, Vol. 55, No. 1, pp. 11-16, January-February, 2014. Original article submitted January 30, 2013. Revision submitted October 18, 2013.

