Concerning the Theory of τ -Measurable Operators Affiliated to a Semifinite von Neumann Algebra

A. M. Bikchentaev*

Kazan Federal University, Kazan, Russia Received November 24, 2014

Abstract—Let \mathscr{M} be a von Neumann algebra of operators in a Hilbert space \mathscr{H} , let τ be an exact normal semifinite trace on \mathscr{M} , and let $L_1(\mathscr{M},\tau)$ be the Banach space of τ -integrable operators. The following results are obtained. If $X=X^*,\ Y=Y^*$ are τ -measurable operators and $XY\in L_1(\mathscr{M},\tau)$, then $YX\in L_1(\mathscr{M},\tau)$ and $\tau(XY)=\tau(YX)\in\mathbb{R}$. In particular, if $X,Y\in\mathscr{B}(\mathscr{H})^{\operatorname{sa}}$ and $XY\in\mathfrak{S}_1$, then $YX\in\mathfrak{S}_1$ and $\operatorname{tr}(XY)=\operatorname{tr}(YX)\in\mathbb{R}$. If $X\in L_1(\mathscr{M},\tau)$, then $\tau(X^*)=\overline{\tau(X)}$. Let A be a τ -measurable operator. If the operator A is τ -compact and $V\in\mathscr{M}$ is a contraction, then it follows from $V^*AV=A$ that VA=AV. We have $A=A^2$ if and only if $A=|A^*||A|$. This representation is also new for bounded idempotents in \mathscr{H} . If $A=A^2\in L_1(\mathscr{M},\tau)$, then $\tau(A)=\tau(\sqrt{|A|}|A^*|\sqrt{|A|})\in\mathbb{R}^+$. If $A=A^2$ and A (or A^*) is semihyponormal, then A is normal, thus A is a projection. If $A=A^3$ and A is hyponormal or cohyponormal, then A is normal, and thus $A=A^*\in\mathscr{M}$ is the difference of two mutually orthogonal projections $(A+A^2)/2$ and $(A^2-A)/2$. If $A,A^2\in L_1(\mathscr{M},\tau)$ and $A=A^3$, then $\tau(A)\in\mathbb{R}$.

DOI: 10.1134/S0001434615090035

Keywords: von Neumann algebra, τ -measurable operator, τ -compact operator, Banach space of τ -integrable operators, Hilbert space, idempotent, hyponormal operator, semihyponormal operator, cohyponormal operator.

1. INTRODUCTION

Let \mathscr{M} be a von Neumann algebra of operators in a Hilbert space \mathscr{H} , let τ be an exact normal semifinite trace on \mathscr{M} , and let $L_1(\mathscr{M},\tau)$ be the Banach space of τ -integrable operators. In this paper, we obtain the following results on the algebraic and order properties of the trace τ and the elements of the *-algebra $\widetilde{\mathscr{M}}$ of all τ -measurable operators.

If
$$X, Y \in \widetilde{\mathscr{M}}^{\mathrm{sa}}$$
 and $XY \in L_1(\mathscr{M}, \tau)$, then

$$YX \in L_1(\mathcal{M}, \tau)$$
 and $\tau(XY) = \tau(YX) \in \mathbb{R}$

(Theorem 3.1). In particular, if $X,Y\in \mathscr{B}(\mathscr{H})^{\mathrm{sa}}$ and $XY\in \mathfrak{S}_1$, then

$$YX \in \mathfrak{S}_1$$
 and $\operatorname{tr}(XY) = \operatorname{tr}(YX) \in \mathbb{R}$.

If $X \in L_1(\mathcal{M}, \tau)$, then

$$\tau(X^*) = \overline{\tau(X)}$$

(Theorem 3.3). If the operator A is τ -compact and $V \in \mathcal{M}$ is a contraction, then it follows from $V^*AV = A$ that

$$VA = AV$$

(Theorem 3.4). An example of an unbounded operator $A \in \widetilde{\mathscr{M}}$ with $A = A^2$ is given (Example 4.2).

 $^{^*}$ E-mail: Airat.Bikchentaev@kpfu.ru, Airat.Bikchentaev@ksu.ru