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Abstract We introduce some new examples of quantum logics of idempotents in a ring.
We continue the study of symmetric logics, i.e., collections of subsets generalizing Boolean
algebras and closed under the symmetric difference.
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1 Motivation

Orthomodular posets and, in particular, orthomodular lattices appear as algebraic struc-
tures of events in quantum mechanics, cf. [14, 17, 31, 32]. The natural requirement that the
event system must allow “sufficiently many” states leads (in its stronger form) to ortho-
modular posets which can be represented as collections of subsets of a set generalizing
σ -algebras [14]. In such collections, the set-theoretical symmetric difference can be intro-
duced as an additional operation [29] which cannot be derived from the lattice-theoretical
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operations and orthocomplementation [21]. Thus we arrive at the notion of a symmetric
logic.

During the study of symmetric logics, many questions remained open (cf. [5, 6]). In [7]
we answered some of them. Here we present a generalization of [7, Theorem 4.3] with a
shorter and direct proof.

2 Basic Notions

2.1 Quantum Logics of Idempotents of Unital Rings

Definition 2.1 Let (L,≤, 0, 1, ⊥) be a poset with 0 and 1 as the smallest and greatest
element, respectively, and a unary operation ⊥ : L → L (the orthocomplementation) such
that

(i) p ≤ q ⇒ q⊥ ≤ p⊥, p, q ∈ L;
(ii) (p⊥)⊥ = p, p ∈ L;

(iii) p ∨ p⊥ = 1, p ∈ L;
(iv) p ≤ q⊥ ⇒ p ∨ q exists in L, p, q ∈ L;
(v) p ≤ q ⇒ q = p ∨ (p⊥ ∧ q), p, q ∈ L.

Then L will be called a quantum logic or also an orthomodular poset. If L is also a lattice,
then L is called an orthomodular lattice.

Let R be a ring with unit e, x⊥ := e − x for R. Then (x⊥)⊥ = x. The set Rid :=
{x ∈ R : x = x2}, equipped with the partial order p ≤ q ⇔ pq = qp = p and
orthocomplementation p �→ p⊥, is a quantum logic. The logics Rid are the main topic of
this paper. They were investigated e.g. in [12, 13, 16, 18, 19, 25, 26].

Definition 2.2 Let (L,≤, 0, 1, ⊥) be a quantum logic. A subset S of L is said to be a
sublogic of L if the following conditions are satisfied:

(i) 0 ∈ S;
(ii) if p ∈ S then p⊥ ∈ S;

(iii) if p, q ∈ S and p ≤ q⊥, then p ∨ q ∈ S.

Let R be an associative unital *-ring. Then the set Rpr := {x ∈ R : x = x∗ = x2}
of all projections of R is a sublogic of the logic Rid. Let 〈R, ‖ · ‖〉 be a unital Banach
*-algebra, R1 := {x ∈ R : ‖x‖ ≤ 1}. A linear functional ϕ on R is called positive if
ϕ(x∗x) ≥ 0 for every x ∈ R. Every positive linear functional ϕ on R is continuous and
‖ϕ‖ = ϕ(e) [34, Chap. I, Lemma 9.9]. A positive linear functional of norm one is called a
state [34, Chap. I, Definition 9.4].

Let H be a Hilbert space over C, and B(H) be the *-algebra of all bounded linear
operators on H. The strong (operator) topology on B(H) is the locally convex topology
determined by the seminorms x ∈ B(H) �→ ‖xξ‖H, ξ ∈ H.

By the commutant of a set X ⊂ B(H) we mean the set

X ′ = {y ∈ B(H) : xy = yx, x∗y = yx∗ (x ∈ X )}.
A *-subalgebra R of the algebra B(H) is called a von Neumann algebra acting in the
Hilbert space H if R = R′′. A complex Banach *-algebra R is called a C∗-algebra if
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‖x∗x‖ = ‖x‖2 for all x ∈ R. Many C∗-algebras are generated as rings by their projections
[1–4]. More precisely, every element in such a C∗-algebra R can be represented as a finite
sum of finite products of projections from R.

For C∗-algebra R let R+ denote its positive part. A linear functional ϕ : R → C is
called a trace if ϕ(z∗z) = ϕ(zz∗) for all z ∈ R. A positive linear functional ϕ on a von
Neumann algebra R is normal if xi ↗ x =⇒ ϕ(x) = sup ϕ(xi) (xi, x ∈ R+).

2.2 Concrete Logics

Let � be a non-empty set. By 2� we denote the set of all subsets of �. For n ∈ N, we define
�n = {1, 2, . . . , n}.

Let us recall [14] that a collection E ⊆ 2� of subsets of � is called a concrete (quantum)
logic if the following conditions hold true:

(C1) � ∈ E ,
(C2) A ∈ E ⇒ Ac := � \ A ∈ E ,
(C3) A,B ∈ E, A ∩ B = ∅ ⇒ A ∪ B ∈ E .

A concrete logic E is called a σ -class [14] if it satisfies the following strengthening of (C3):

(C3’) {An | n ∈ N} ⊆ E, Am ∩ An = ∅ whenever m �= n ⇒ ⋃
n∈N An ∈ E .

A family E ⊆ 2� is a concrete logic if and only if it satisfies (C1) and the following
condition:

(C4) A,B ∈ E, A ⊆ B ⇒ B \ A ∈ E .

Remark 2.3 Every concrete logic can be represented as the logic of idempotents in some
ring. Let � be a non-empty set, and let E ⊆ 2� be a concrete logic. If R� is the ring of
all real functions on �, then the set of all characteristic functions χA, A ∈ E , is a logic of
idempotents of R�. This logic is isomorphic to E .

2.3 Symmetric Logics

The set 2� is a group with respect to the symmetric difference operation: A � B := (A \
B) ∪ (B \ A). Notice that

Ac � B = (A � B)c ,

Ac � Bc = A � B .

A symmetric logic [28, Definition 3.2] is a concrete quantum logic E satisfying:

(S) A,B ∈ E ⇒ A � B ∈ E .

A family E ⊆ 2� is a symmetric logic if and only if it satisfies (C1) and (S) [5, Proposition
1]. Symmetric logics were investigated e.g. in [5, 6, 10, 11, 21, 22, 28, 29].

Example 2.4 Let n ∈ N and �2n = {1, 2, . . . , 2n}. Then the family

Eeven
2n = {A ⊆ �2n | card A is even}

is a symmetric logic on �2n.
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Example 2.5 Let E ⊂ 2� be a concrete quantum logic and T ∈ E , T �= ∅. Then the family
ET = {A ∈ E | A ⊆ T } is a concrete quantum logic with the greatest element T . Moreover,
if E is a symmetric logic, then ET is also a symmetric logic.

In the latter example, it was necessary to assume that T ∈ E . This condition can be
omitted in symmetric logics.

Example 2.6 Let E ⊆ 2� be a symmetric logic and T ⊆ �, T �= ∅. Then the family

E |T = {A ∩ T | A ∈ E} ⊆ 2T

is a symmetric logic with the greatest element T .

2.4 States

We say that a mapping m : E → [0, 1] is a state (or a finitely additive probability measure)
on a concrete logic E if m(�) = 1 and m(A ∪ B) = m(A) + m(B) whenever A,B ∈
E, A∩B = ∅. Let us denote by P(E) the set of all states on a concrete logic E . Recall that
a state m ∈ P(E) is called subadditive [31, p. 829] if for each A,B ∈ E there exists a set
C ∈ E such that C ⊇ A ∪ B and m(C) ≤ m(A) + m(B).

If E is a Boolean algebra then any state m ∈ P(E) is subadditive. There exists a concrete
quantum logic which is not a Boolean algebra and all of its states are subadditive. This result
was established in [30] with substantial help of the techniques developed in [23] and [27]
(see also [31, p. 831]).

From now on, we suppose that E is a symmetric logic. A state m ∈ P(E) is called
�-subadditive [10] if

m(A � B) ≤ m(A) + m(B) for any pair A, B ∈ E .

The set of all �-subadditive states is convex. Every subadditive state m ∈ P(E) is �-
subadditive (hint: C ⊇ A∪B ⊇ A�B), but the reverse implication does not hold in general.
In [6], the following situations were demonstrated:

1) a �-subadditive state which is not subadditive;
2) a two-valued state which is not �-subadditive.

3 Additive Mappings and Quantum Logics

3.1 New Quantum Logics of Idempotents in a Ring

Theorem 3.1 Let R be a ring with unit e; x, y ∈ R, and ϕ : R → C be an additive
mapping with ϕ(e) = 1. Then the sets

Rx,y

ϕ,1 := {p ∈ Rid : ϕ(px + yp) = ϕ(p)ϕ(x + y)}
and

Rx,y

ϕ,2 := {p ∈ Rid : ϕ(xpy) = ϕ(p)ϕ(xy)}
are quantum logics with the greatest element e, the partial order inherited fromRid and the
orthocomplementation p �→ p⊥ = e − p.
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Moreover, if 〈R, t〉 is a topological ring and ϕ is t-continuous, then the sets Rx,y

ϕ,1 and

Rx,y

ϕ,2 are t-closed.

Proof It is clear that 0, e ∈ Rx,y
ϕ,k for k ∈ {1, 2}. We show that p ∈ Rx,y

ϕ,k ⇔ p⊥ ∈ Rx,y
ϕ,k for

all p ∈ Rid and k ∈ {1, 2}. Let p ∈ Rx,y

ϕ,1. Since p⊥x +yp⊥ = x +y − (px +yp), we have

ϕ(p⊥x + yp⊥) = ϕ(x + y) − ϕ(px + yp) = ϕ(x + y) − ϕ(p)ϕ(x + y) = ϕ(p⊥)ϕ(x + y)

and p⊥ ∈ Rx,y

ϕ,1. Let now p ∈ Rx,y

ϕ,2. Since xp⊥y = xy − xpy, we have

ϕ(xp⊥y) = ϕ(xy) − ϕ(xpy) = ϕ(xy) − ϕ(p)ϕ(xy) = ϕ(p⊥)ϕ(xy)

and p⊥ ∈ Rx,y

ϕ,2.

Let p, q ∈ Rx,y
ϕ,k for k ∈ {1, 2}.

If p ≤ q⊥, then p ∨ q = p + q ∈ Rid and it is easy to check that p ∨ q ∈ Rx,y
ϕ,k .

If p ≤ q, then q − p ∈ Rid, q − p ≤ p⊥, and q = (q − p) ∨ p. It is easy to check that
q − p ∈ Rx,y

ϕ,k .

Finally, note that if 〈R, t〉 is a topological ring, then the quantum logic Rid, being defined
by equalities containing continuous operations, is t-closed.

Proposition 3.2 Let x, y, u, v ∈ R and p, q ∈ Rid. Then the following holds:

1) R0,0
ϕ,1 = Re,0

ϕ,1 = R0,e
ϕ,1 = Re,e

ϕ,1 = Rx,0
ϕ,2 = R0,y

ϕ,2 = Re,e
ϕ,2 = Rid.

2) λ,μ ∈ Z =⇒ Rλe±x,μe±y

ϕ,1 = Rx,y

ϕ,1 for the following choices of signs in two ±: +,+
and −,−.

3) R−x,−y
ϕ,k = Rx,y

ϕ,k for k ∈ {1, 2}.
4) Rx,y

ϕ,1 ∩ Ru,v
ϕ,1 ⊂ Rx+u,y+v

ϕ,1 .

5) Rx,0
ϕ,1 = Re,x

ϕ,2.

6) R0,y

ϕ,1 = Ry,e

ϕ,2.

7) p ∈ Rq,0
ϕ,1 ⇔ q ∈ R0,p

ϕ,1 .

8) p ∈ Rq,q

ϕ,1 ⇔ q ∈ Rp,p

ϕ,1 .

9) p ∈ Rp,p

ϕ,1 ⇔ p ∈ Rp,p

ϕ,2 ⇔ ϕ(p) ∈ {0, 1}.

Proof 1) Easy verification.
2) We have

p(λe ± x) + (μe ± y)p = (λ + μ)p ± (px + yp), (1)

i.e. ∓(px + yp) = (λ + μ)p − (p(λe ± x) + (μe ± y)p). The inclusion “⊂”:

∓ϕ(px + yp) = (λ + μ)ϕ(p) − ϕ(p(λe ± x) + (μe ± y)p)

= (λ + μ)ϕ(p) − ϕ(p)ϕ((λ + μ)e ± (x + y))

= (λ + μ)ϕ(p) − ϕ(p)(λ + μ ± ϕ(x + y)) = ∓ϕ(p)ϕ(x + y).

The inclusion “⊃”: we have via (1)

ϕ(p(λe ± x) + (μe ± y)p) = ϕ((λ + μ)p ± (px + yp)) = (λ + μ)ϕ(p) ± ϕ(px + yp)

= (λ + μ)ϕ(p) ± ϕ(p)ϕ(x + y)

= ϕ(p)ϕ((λe ± x) + (μe ± y)).
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3) For k = 1, it follows by 2) with λ = μ = 0. For k = 2 we have ϕ((−x)p(−y)) =
ϕ(p)ϕ((−x)(−y)) ⇔ ϕ(xpy) = ϕ(p)ϕ(xy).

5) We have ϕ(px) = ϕ(p)ϕ(x) ⇔ ϕ(epx) = ϕ(p)ϕ(ex).
6) We have ϕ(yp) = ϕ(p)ϕ(y) ⇔ ϕ(ype) = ϕ(p)ϕ(ye).
7) We have ϕ(pq + 0p) = ϕ(p)ϕ(q) ⇔ ϕ(q0 + pq) = ϕ(q)ϕ(p).
8) We have ϕ(pq + qp) = ϕ(p)ϕ(2q) ⇔ ϕ(qp + pq) = ϕ(q)ϕ(2p).
9) We have 2ϕ(p) = ϕ(pp + pp) = ϕ(p)ϕ(p + p) ⇔ ϕ(p) = (ϕ(p))2 ⇔ ϕ(p) ∈ {0, 1}

and ϕ(ppp) = ϕ(p)ϕ(pp) ⇔ ϕ(p) = (ϕ(p))2 ⇔ ϕ(p) ∈ {0, 1}.

Remark 3.3 We obtain Ru,v
ϕ,1

⋂Ru+x,v+y

ϕ,1 ⊂ Rx,y

ϕ,1 by 3) and 4) of Proposition 3.2. If R is

a unital algebra, then Rλe±x,μe±y

ϕ,1 = Rx,y

ϕ,1 for all λ, μ ∈ C and for the following choices of
signs in two ±: +,+ and −,−.

Proposition 3.4 Let t ∈ R be invertible, ψ(z) := ϕ
(
tzt−1

)
for all z ∈ R and let p ∈ Rid.

Then p ∈ Rx,y
ψ,k ⇔ tpt−1 ∈ Rtxt−1,tyt−1

ϕ,k for all x, y ∈ R and k ∈ {1, 2}.

Proof The implication “⇒”: If k = 1, then

ϕ
(
tpt−1txt−1 + tyt−1tpt−1

)
= ϕ

(
t (px + yp)t−1

)
= ψ(px + yp) = ψ(p)ψ(x + y)

= ϕ
(
tpt−1

)
ϕ

(
txt−1 + tyt−1

)
.

If k = 2, then

ϕ
(
txt−1tpt−1tyt−1

)
= ϕ

(
txpyt−1

)
= ψ(xpy) = ψ(p)ψ(xy)

= ϕ
(
tpt−1

)
ϕ

(
txt−1tyt−1

)
.

Proposition 3.5 Let x, y ∈ R and p ∈ Rid. If py = yp, then

1) p ∈ Rx,y

ϕ,1 ⇔ p ∈ Rx+y,0
ϕ,1 ;

2) p ∈ Rx,y

ϕ,2 ⇔ p ∈ R0,xy

ϕ,1 .

In particular, if y is a central element ofR, thenRx,y

ϕ,1 = Rx+y,0
ϕ,1 andRx,y

ϕ,2 = R0,xy

ϕ,1 .

3.2 Quantum Logics of Idempotents of Unital Banach *-algebras

Proposition 3.6 Let 〈R, ‖ · ‖〉 be a unital Banach *-algebra, x, y ∈ R and ϕ be a state on
R, k ∈ {1, 2}.
1) The quantum logicRx,y

ϕ,k is ‖ · ‖-closed.
2) p ∈ Rx,y

ϕ,k ⇔ p∗ ∈ Ry∗,x∗
ϕ,k for all p ∈ Rid.

Proof 1) The quantum logic Rid is ‖ · ‖-closed. Every positive linear functional on any
unital Banach *-algebra automatically is continuous [34, Chap. I, Lemma 9.9]. Hence
the quantum logic Rx,y

ϕ,k is ‖ · ‖-closed via Theorem 3.1.
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2) Recall that (x∗)∗ = x and (xy)∗ = y∗x∗. We have ϕ(z∗) = ϕ(z) for all z ∈ R
[34, Chap. I, §9, formula (3)]. If p ∈ Rx,y

ϕ,1, then

ϕ(p∗y∗+x∗p∗) = ϕ((px+yp)∗) = ϕ(px + yp) = ϕ(p)·ϕ(x + y) = ϕ(p∗)ϕ(x∗+y∗)

and p∗ ∈ Ry∗,x∗
ϕ,1 . If p ∈ Rx,y

ϕ,2, then

ϕ(y∗p∗x∗) = ϕ((xpy)∗) = ϕ(xpy) = ϕ(p) · ϕ(xy) = ϕ(p∗)ϕ(y∗x∗)

and p∗ ∈ Ry∗,x∗
ϕ,2 .

In particular, for y = x∗ we have p ∈ Rx,x∗
ϕ,k ⇔ p∗ ∈ Rx,x∗

ϕ,k for all p ∈ Rid and
k ∈ {1, 2}.

Theorem 3.7 Let R be an unital C∗-algebra, p ∈ Rid and x ∈ R. Then the following
conditions are equivalent:

(i) xp = px;
(ii) p ∈ Rx,e−x

ϕ,1 for all states ϕ onR.

Proof (ii)⇒(i). We have ‖ϕ‖ = ϕ(e) = 1 and ϕ(xp) = ϕ(px) for all states ϕ on R.
By Hahn-Banach separation theorem, the set R
 of all continuous linear functionals on R
is separating for R. If f ∈ R
, we define f ∗ ∈ R
 by setting f ∗(a) = f (a∗) for all
a ∈ R. We say a functional f ∈ R
 is self-adjoint if f = f ∗. For any bounded linear
functional f on R, there are unique self-adjoint bounded linear functionals f1 and f2 on
R such that f = f1 + if2 (take f1 = (f + f ∗)/2 and f2 = (f − f ∗)/(2i)). Let τ be
a self-adjoint bounded linear functional on C∗-algebra R. Then by Jordan Decomposition
Theorem [24, Theorem 3.3.10] there exist positive linear functionals τ+, τ− on R such that
τ = τ+ − τ− and ‖τ‖ = ‖τ+‖ + ‖τ−‖. Thus every f ∈ R
 is a linear combination of four
positive ones. Hence, the set of all states on R is separating for R and xp = px.

Proposition 3.8 Let a state ϕ on a von Neumann algebra R be normal, x, y ∈ R and
k ∈ {1, 2}. Then the quantum logicRx,y

ϕ,k

⋂Rpr is so-closed.

Proof Since B(H)pr is closed in the strong operator topology (i.e., so-closed) [15, Exercise
5.7.8] and R is so-closed, the set Rpr = B(H)pr ⋂R is so-closed. The multiplication
operation (u, v) �→ uv is so-continuous as a mapping B(H)1 × B(H) → B(H) [8, Chap.
II, Proposition 2.4.1]. Finally, recall that every normal state ϕ on a von Neumann algebra R
is so-continuous on R1 [34, Chap. II, Theorem 2.6].

Proposition 3.9 If a state ϕ on a von Neumann algebra R is singular, then for every
nonzero p ∈ Rpr there exists a nonzero q ∈ Rpr such that q ≤ p and q ∈
Rp,0

ϕ,1

⋂R0,p

ϕ,1

⋂Rp,p

ϕ,1

⋂Rp,p

ϕ,2 .

Proof For singular state ϕ for every nonzero p ∈ Rpr there exists a nonzero q ∈ Rpr such
that q ≤ p and ϕ(q) = 0 [34, Chap. III, Theorem 3.8]. We have pq = qp = 1

2 (pq +qp) =
pqp = q and

ϕ(pq) = ϕ(qp) = ϕ(pq + qp) = ϕ(pqp) = ϕ(q) = 0 = ϕ(q)ϕ(p).
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3.3 Quantum Logics and Tracial States on Unital C∗-algebras

Proposition 3.10 Let ϕ be a tracial state on unital C∗-algebra R and k ∈ {1, 2}. Then the
following holds:

1) Rx,y

ϕ,2 = Ryx,0
ϕ,1 for all x, y ∈ R.

2) Rx,y

ϕ,1 = Rx+y,e

ϕ,2 for all x, y ∈ R.

3) Rx,y

ϕ,2 = Rid for all x, y ∈ R with yx ∈ {0, e}.
4) Rλe±x,μe∓x

ϕ,1 = Rid for all x ∈ R and λ, μ ∈ C (the signs in the formula must be
opposite to each other).

5) Rx,x
ϕ,1 = Rx,x

ϕ,2 for all x ∈ Rid.

6) Rx,x⊥
ϕ,k = Rid for all x ∈ Rid.

7) p ∈ Rx,y
ϕ,k ⇔ tpt−1 ∈ Rtxt−1,tyt−1

ϕ,k for all p ∈ Rid, x, y ∈ R and an invertible t ∈ R.

Proof 1) The inclusion “⊂”: we have ϕ(pyx) = ϕ(xpy) = ϕ(p)ϕ(xy) = ϕ(p)ϕ(yx).
The inclusion “⊃”: we have ϕ(xpy) = ϕ(pyx) = ϕ(p)ϕ(yx) = ϕ(p)ϕ(xy).

2) The inclusion “⊂”: we have ϕ(p)ϕ(x +y) = ϕ(px +yp) = ϕ(px)+ϕ(yp) = ϕ((x +
y)p) = ϕ((x + y)pe). The inclusion “⊃”: we have ϕ(px + yp) = ϕ(px) + ϕ(yp) =
ϕ(xp) + ϕ(yp) = ϕ((x + y)p) = ϕ((x + y)pe) = ϕ(p)ϕ(x + y).

3) Let p ∈ Rid. If yx = 0, then 0 = ϕ(pyx) = ϕ(xpy) = ϕ(p)ϕ(xy) = ϕ(p)ϕ(yx). If
yx = e, then ϕ(xpy) = ϕ(pyx) = ϕ(p) = ϕ(p)ϕ(yx) = ϕ(p)ϕ(xy).

4) We have

ϕ(p(λe ± x) + (μe ∓ x)p) = ϕ((λ + μ)p ± (px − xp))

= (λ + μ)ϕ(p) ± (ϕ(px) − ϕ(xp))

= (λ + μ)ϕ(p) = ϕ(p)ϕ((λe ± x) + (μe ∓ x)))

for all p ∈ Rid.
5) The inclusion “⊂”: we have ϕ(px+xp) = ϕ(px)+ϕ(xp) = 2ϕ(px) = ϕ(p)ϕ(2x) ⇒

ϕ(xpx) = ϕ
(
px2

) = ϕ(px) = ϕ(p)ϕ
(
x2

)
.

The inclusion “⊃”: we have ϕ(xpx) = ϕ
(
px2

) = ϕ(p)ϕ
(
x2

) = ϕ(p)ϕ(x) ⇒
⇒ ϕ(px + xp) = ϕ(px) + ϕ(xp) = 2ϕ(xpx) = 2ϕ(p)ϕ(x2) = 2ϕ(p)ϕ(x)

= ϕ(p)ϕ(x + x).

6) Let p ∈ Rid. If k = 1, then

ϕ(px + x⊥p) = ϕ(px) + ϕ(x⊥p) = ϕ(px + px⊥) = ϕ(p) = ϕ(p)ϕ(x + x⊥).

If k = 2, then ϕ
(
xpx⊥) = ϕ

(
px⊥x

) = ϕ(0) = 0 = ϕ(p)ϕ
(
xx⊥)

.
7) We apply Proposition 3.4 with ψ = ϕ.

Example 3.11 Let R = M2(C) and ϕ be the normalized trace on R, i.e. ϕ

((
α β

γ δ

))

=
1
2 (α + δ), 0 = diag(0, 0), e = diag(1, 1). Put p(a, b, c) =

(
a b

c 1 − a

)

for a, b, c ∈ C

with a = a2 + bc, then

Rid = {0, e, p(a, b, c) with a, b, c ∈ C and a = a2 + bc}
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is a quantum logic which is a lattice. For x = p(1, 0, 0) and y = p(1/2, 1/2, 1/2) we have

Rx,y

ϕ,1 = {0, e, p(a, b, c), where a, b, c ∈ C with a = a2 + bc and 2a + b + c = 1},

Rx,y

ϕ,2 = {0, e, p(a, b, c), where a, b, c ∈ C with a = a2 + bc and 2a + 2b = 1}.

Hence Rx,y

ϕ,1 ∩ Rx,y

ϕ,2 =
{

0, e, q = p
(

1
2 − 1

23/2 , 1
23/2 , 1

23/2

)
, q⊥

}
. Also we have

p(0, 1, 0) ∈ Rx,y

ϕ,1 \ Rx,y

ϕ,2, p(1/4, 1/4, 3/4) ∈ Rx,y

ϕ,2 \ Rx,y

ϕ,1.

4 Concrete Quantum Logics

4.1 Asymmetric Logics: Definition and Examples

Definition 4.1 A concrete logic E is called an asymmetric logic if A � B ∈ E if and only
if A ∩ B ∈ E for all A, B ∈ E .

Example 4.2 Let � = {zn}∞n=1 be a sequence of complex numbers such that � ∈ �1, i.e. the
series

∑∞
n=1 zn converges absolutely. Let � ∈ {Q,R} and z = ∑∞

n=1 zn. Recall that every
rearrangement of {zn}∞n=1 preserves the absolute convergence and the sum z. Then

E�,� = {I ⊂ � |
∑

x∈I

x = λz for some λ ∈ �}

is an asymmetric logic. (The sum of an empty sequence is considered zero, thus ∅ ∈ E�,�.)
Moreover, ER,� is a σ -class and EQ,� is its sublogic.

Example 4.3 Let A be the Lebesgue σ -algebra on � = [0, 1], μ be the linear Lebesgue
measure such that μ(�) = 1. Then EQ,μ = {A ∈ A : μ(A) ∈ Q} is an asymmetric logic.

Symmetric logics may be assymetric, e.g., Boolean algebras, or may not be assymetric,
e.g. Eeven

4 . The latter example is prototypical in the following sense:

Proposition 4.4 If E is a symmetric logic of subsets of � and E is not an asymmetric logic,
then there is a partition {Ci}4

i=1 of � with the following property:

For I ⊂ {1, 2, 3, 4}, the union ⋃
i∈I Ci belongs to E if and only if card I is even.

Proof If E is not an asymmetric logic, then there are A,B ∈ E such that A � B ∈ E and
A∩B /∈ E . It suffices to take C1 = A∩Bc, C2 = Ac ∩B, C3 = A∩B, C4 = Ac ∩Bc.

Proposition 4.5 A symmetric logic is an asymmetric logic if and only if it is a Boolean
algebra.

Together with Proposition 4.4, we obtain:

Corollary 4.6 If a symmetric logic is not a Boolean algebra, it contains a sublogic
isomorphic to Eeven

4 .
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4.2 Concrete Logics Generated by the Independence Relation

LetA be a Boolean algebra with the unit �, ϕ : A → C be an additive mapping (ϕ(A∪B) =
ϕ(A) + ϕ(B) for all A, B ∈ A, A ∩ B = ∅) with ϕ(�) = 1. Let A, B ∈ A. We have
ϕ(A) + ϕ(Ac) = ϕ(�) = 1 and ϕ(Ac) = 1 − ϕ(A), hence ϕ(∅) = 0. The following
conditions are equivalent:

(i) ϕ(A ∩ B) = ϕ(A)ϕ(B);
(ii) ϕ(Ac ∩ B) = ϕ(Ac)ϕ(B);

(iii) ϕ(A ∩ Bc) = ϕ(A)ϕ(Bc);
(iv) ϕ(Ac ∩ Bc) = ϕ(Ac)ϕ(Bc).

Proposition 4.7 The family

AA
ϕ := {B ∈ A : ϕ(A ∩ B) = ϕ(A)ϕ(B)}

is a concrete logic with the greatest element �. We have AA
ϕ = AAc

ϕ . Moreover, if A is a

σ -algebra and ϕ is σ -additive, thenAA
ϕ is a σ -class.

Proof It follows by distributivity of the intersection with respect to the union.

Let A be a Boolean algebra and ν : A → R be a measure (ν(A ∪ B) = ν(A) + ν(B)

for all A,B ∈ A, A ∩ B = ∅). An event A ∈ A is a ν-atom if ν(A) > 0 and if for
any event B ⊂ A, either ν(B) = ν(A) or ν(B) = 0. A measure ν is nonatomic if it has no
ν-atoms. A state ν is purely atomic, if there is a sequence of ν-atoms such that the sum of
their probabilities is 1.

Remark 4.8 We have A∅
ϕ = A�

ϕ = A and A ∈ AA
ϕ ⇔ ϕ(A) ∈ {0, 1}. Moreover, if

ϕ : A → [0, 1], then AA
ϕ = A for all A ∈ A with ϕ(A) ∈ {0, 1}. If ϕ is nonatomic, then

there exists nonempty A ∈ A with ϕ(A) = 0 [20].

Theorem 4.9 AA
ϕ is an asymmetric logic.

Proof We show that for B,C ∈ AA
ϕ the following conditions are equivalent:

(i) B � C ∈ AA
ϕ ;

(ii) B ∩ C ∈ AA
ϕ .

Recall that ϕ(A ∩ B) = ϕ(A)ϕ(B) and ϕ(A ∩ C) = ϕ(A)ϕ(C). The implication (i)⇒(ii):
we have

ϕ(A ∩ (B � C)) = ϕ(A)ϕ(B � C) = ϕ(A)(ϕ(B) + ϕ(C) − 2ϕ(B ∩ C)) (2)

and via distributivity of the intersection with respect to the symmetric difference

ϕ(A ∩ (B � C)) = ϕ((A ∩ B) � (A ∩ C))

= ϕ(A ∩ B) + ϕ(A ∩ C) − 2ϕ(A ∩ B ∩ C)

= ϕ(A)ϕ(B) + ϕ(A)ϕ(C) − 2ϕ(A ∩ B ∩ C).

Now via (2) we obtain ϕ(A ∩ (B ∩ C)) = ϕ(A)ϕ(B ∩ C), as desired.
The implication (ii)⇒(i) can be verified by inversion of the chain of arguments given

above.
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Corollary 4.10 If a concrete logic AA
ϕ is a symmetric logic, then it is a Boolean algebra.

Corollary 4.11 For n ≥ 2 the symmetric logic Eeven
2n cannot be represented in the formAA

ϕ

with someA, ϕ and A ∈ A.

Proposition 4.12 Let A be a Boolean algebra and ϕ,ψ ∈ P(A) be so that at least one of
them is nonatomic. IfAA

ϕ = AA
ψ for all A ∈ A, then ϕ = ψ .

Proof Note that ϕ, ψ have identical independent events (i.e. for any pair of events A and
B, ϕ(A ∩ B) = ϕ(A)ϕ(B) if and only if ψ(A ∩ B) = ψ(A)ψ(B)) and apply Theorem 1
of [9].

Example 4.13 Let A = 2�6 , ϕ(X) = 1
6 card X for X ∈ A. Let A = {2, 4, 6}. Then

AA
ϕ = {∅, �6, B = {1, 2}, C = {1, 4},D = {1, 6}, E = {2, 3}, F = {2, 5},

G = {3, 4}, H = {3, 6}, I = {4, 5}, J = {5, 6}, Bc, Cc,Dc,Ec, F c,Gc,Hc, I c, J c}.
We have Bc�H = I and B�C /∈ AA

ϕ ⊂ Eeven
6 .

Example 4.14 Let N0 = N ∪ {0}, A = 2N0 and a state ϕ be defined by a non-increasing
sequence an = ϕ({n}), n ∈ N0. If an+1 ≤ a2

n holds for all n ∈ N0, then there are no
(nontrivial) independent events in this probability space [33, Example 1.1]. Thus AA

ϕ =
{∅,N0} for all A ∈ A \ {∅,N0}.

Remark 4.15 The range of a purely atomic probability measure can easily be the whole
[0, 1], e.g. if the probability of the n-th atom is an = 1/2n+1. If the range {ϕ(A) : A ∈ A}
of a probability measure ϕ contains the whole interval [0, 1] or at least if the range contains
an arbitrary small interval [0, ε], ε > 0, then there are infinitely many independent events
in the underlying probability space [33, Theorem 1.1].

4.3 When All States are �-subadditive

All states on Boolean algebras are subadditive and hence �-subadditive.

Problem 4.16 [6, Problem 7.1] Let E be a symmetric logic such that any state m ∈ P(E) is
�-subadditive. Is it true that E is a Boolean algebra?

A positive answer was given in [7, Theorem 4.3] with a proof by induction on the car-
dinality of the domain. Here we present a more general result with a new proof which is
shorter and constructive—we describe the state which violates �-subadditivity.

Let us recall that a state mx on a concrete logic E of subsets of � is concentrated in a
point x ∈ � if

mx(A) =
{

1 if x ∈ A,

0 otherwise.

Theorem 4.17 Let E be a finite symmetric logic with the following property:

Each state on E which is an affine combination of concentrated states is
�-subadditive.

Then E is a Boolean algebra.

Author's personal copy



1998 Int J Theor Phys (2015) 54:1987–2000

Proof Suppose that E is a finite symmetric logic of subsets of �. Without loss of generality,
we assume that E satisfies

∀a, b ∈ �, a �= b ∃A ∈ E : a ∈ A, b /∈ A .

This means that each two points a, b ∈ � can be separated by an element of E . Such a rep-
resentation can be always found by the identification of points which cannot be separated.
As E is finite, so is �. Let n = card �.

For x ∈ �, we define

Ex = {A ∈ E | x ∈ A} .

According to our assumptions,
⋂ Ex = {x} for all x ∈ �.

If E contains all singletons, it is a Boolean algebra isomorphic to 2�. Suppose that {x} /∈
E . We choose two sets A,B ∈ Ex such that their intersection, A ∩ B, has the least possible
cardinality, say k.

Claim A ∩ B is a proper subset of A and B, i.e., there exist a ∈ A \ B, b ∈ B \ A.

Proof of the claim If A ⊂ B and card A > 1, then there is a c ∈ A, c �= x. As c can be
separated from x, there is a C ∈ E such that x ∈ C, c /∈ C. The intersection A ∩ C contains
x and has a lower cardinality than A = A ∩ B, a contradiction.

As a corollary, we get the following:

Claim Each set from E has at least k + 1 elements.

Now we are ready to finish the proof of the theorem. We define m as the following affine
combination of concentrated states:

m = −k

n − k − 1
mx + 1

n − k − 1

∑

y �=x

my ,

where the sum is taken over all y ∈ � \ {x}. Due to the preceding claim, m is non-negative.
As an affine combination of states, m is additive and satisfies m(�) = 1, thus it is a state.
However, m is not �-subadditive because

m(A) = 1

n − k − 1
(−k + card A − 1) ,

m(B) = 1

n − k − 1
(−k + card B − 1) ,

m(A) + m(B) = 1

n − k − 1
(−2 k + card A + card B − 2) ,

m(A�B) = 1

n − k − 1
(−2 k + card A + card B) > m(A) + m(B) .

Remark 4.18 Theorem 4.17 cannot be extended to infinite symmetric logics, see Proposi-
tion 4.8 of [7].
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