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Scalar self-force on static charge in a long throat
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We compute the self-force on a scalar charge at rest in the spacetime of long throat. We

consider arbitrary values of the mass of the scalar field and the constant of nonmnimal
coupling of the scalar field to the curvature of spacetime. We also show the coincidence

of explicit calculations of self-force in the limit of large mass of the field with known

results.
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1. Introdution

A very well known phenomenon that occur with a charge in a curved spacetime, is

that it may become subjected to the self-interactions. The origin of this induced self-

interaction resides on the non-local structure of the field caused by the spacetime

curvature or non-trivial topology.

In flat spacetime this effect is produced by a local distortion of the field lines

associated with the particles acceleration. For electrically charged particles in flat

spacetime, the self-force is given by the Abraham-Lorentz-Dirac formula.1,2 In the

gravitational field the self-energy problem becomes more complicated. The reason is

that contribution to the self-energy in this case is non-local. The self-force problem

for an electric charge in a curved space background was first investigated by DeWitt

and Brehme3 and later by Hobbs.4 The gravitational self-force was first calculated

almost simultaneously by Mino, Sasaki and Tanaka5 and by Quinn and Wald.6

Later, Quinn derived the equivalent formula for a charge coupled to a minimally-

coupled massless scalar field.7

A number of simple static configurations has been analyzed, including the

self-force acting on scalar or electric charges held static in the spacetime of a

Schwarzschild black hole,8–11 electric or magnetic dipoles which are static outside a
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Schwarzschild black hole,12 a static electric charge outside a Kerr black hole13,14 or a

Kerr-Newman black hole,15 a static electric charge in a spherically-symmetric Brans-

Dicke field.16 The self-force can be nonzero for a static particle in flat spacetimes of

the topological defects.17–21 In curved spacetimes with nontrivial topological struc-

ture the investigations of this type have the additional interesting features.22–27

Unfortunately, the authors do not know the results of calculation of the self-force

of the charge, which is the source of a massive field. In this paper we consider the

problem of computing the self-force on a scalar charge at rest in the spacetimes

of long throats, allowing for the arbitrary values of the mass of field and coupling

constant. It gives the possibility to compare the explicit calculation of the self-force

in the limit of large mass of the field with the corresponding result of paper.28

Throughout this paper we use units c = G = 1.

2. WKB approximation of the self-potential

Let us consider a scalar field φ with scalar source j. The corresponding field equation

has a form

φ;µ;µ − (ξR+m2)φ = −4πq

∫
δ(4)(xµ, x̃µ(τ))

dτ√
−g(4)

, (1)

where ξ is a coupling of the scalar field to the scalar curvature R and g(4) is the

determinant of the metric gµν , m denotes the mass of the scalar field, q is the scalar

charge and τ is its proper time. The world line of the charge is given by x̃µ(τ). We

shall consider the case in which the charge is at rest in a static spacetime

ds2 = gtt(x
i)dt2 + gjk(xi)dxjdxk, (2)

where i, j, k = 1, 2, 3. This means that one can rewrite the field equation in the

following way

1
√
−gtt

√
g(3)

∂

∂xj

(√
−gtt

√
g(3)gjk

∂φ(xi; x̃i)

∂xk

)
−(ξR(x) +m2)φ(xi; x̃i) = −4πqδ(3)(xi, x̃i)√

g(3)
, (3)

where g(3) = det gij and we take into account that dτ/dt =
√
gtt for the charge at

rest.

In the static spherically symmetric spacetime

ds2 = −f(ρ)dt2 + dρ2 + r2(ρ)
(
dθ2 + sin2 θ dϕ2

)
(4)
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one can rewrite the equation (3) in the following way[
∂2

∂ρ2
+

(
f ′

2f
+

(r2)′

r2

)
∂

∂ρ
+

∂2

∂θ2
+ cot θ

∂

∂θ

+
∂2

∂ϕ2
− (ξR+m2)

]
φ(ρ, θ, ϕ; ρ̃, θ̃, ϕ̃)

= −4πqδ(ρ, ρ̃)δ(θ, θ̃)δ(ϕ, ϕ̃)

r2 sin θ
. (5)

The solution of this equation can be expanded in terms of Legendre polynomials Pl
with the result that

φ(xα; x̃α) = q

∞∑
l=0

(2l + 1)Pl(cos γ)gl(ρ, ρ̃), (6)

where cos γ ≡ cos θ cos θ̃ + sin θ sin θ̃ cos(ϕ− ϕ̃) and gl(ρ, ρ̃) satisfies the equation

g′′l +

(
f ′

2f
+

(r2)′

r2

)
g′l −

[
l(l + 1)

r2
+m2 + ξR

]
gl = −δ(ρ, ρ̃)

r2
. (7)

In this expression and below a prime denotes a derivative with respect to ρ. The

homogeneous solutions to this equation will be denoted by pl(ρ) and ql(ρ). pl(ρ)

is chosen to be the solution which is well behaved at ρ = −∞ and divergent at

ρ→ +∞. ql(ρ) is chosen to be the solution which is divergent at ρ→ −∞ and well

behaved at ρ = +∞. Thus{
d

dρ2
+

(
f ′

2f
+

(r2)′

r2

)
d

dρ
−
[
l(l + 1)

r2
+m2 + ξR

]}{
p l(ρ)

ql(ρ)

}
= 0, (8)

gl(ρ, ρ̃) = Clp l(ρ<)ql(ρ>)

= Cl

[
Θ(ρ̃− ρ)p l(ρ)ql(ρ̃) + Θ(ρ− ρ̃)p l(ρ̃)ql(ρ)

]
, (9)

where Θ(x) is the Heaviside step function, i.e., Θ(x) = 1 for x > 0 and Θ(x) = 0 for

x < 0, Cl is a normalization constant which could be absorbed into the definition

of p l and ql. Normalization of gl is achieved by integrating (7) once with respect to

ρ from ρ̃− δ ρ̃+ δ and letting δ → 0. This results in the Wronskian condition

Cl

(
p l
dql
dρ
− ql

dp l
dρ

)
= − 1

r2
. (10)

The WKB approximation for the radial modes p l and q l is obtained by the

change of variables

p l =
1√

2r2W
exp

(∫ ρ

Wdρ

)
,

ql =
1√

2r2W
exp

(
−
∫ ρ

Wdρ

)
. (11)
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Substitution of these expressions into (10) shows that the Wronskian condition is

obeyed if

Cl = 1. (12)

Substituting the expressions (11) into (6) we can obtain the following expression

for φ under the assumptions θ = θ̃, ϕ = ϕ̃ and ρ̃ = ρ+ δρ > ρ

φ(ρ, θ, ϕ; ρ̃, θ, ϕ) =
q

r(ρ)r(ρ̃)

∞∑
l=0

(
l +

1

2

) exp

(
−
ρ+δρ∫
ρ

W

(
˜̃ρ, l +

1

2

)
d ˜̃ρ

)
√
W

(
ρ, l +

1

2

)
W

(
ρ̃, l +

1

2

) . (13)

Substitution the expressions (11) into the mode equation (8) gives the following

equation for W :

W 2 =
l(l + 1) +m2r2 + 2ξ

r2
+

(
W 2
)′′

4W 2
−

5
(
W 2
)′2

16W 4
+
f ′(W 2)

′

8fW 2
− f ′W

2f
+

(r2)
′′

2r2

− (r2)
′2

4r4
+

(r2)
′
f ′

4r2f
+ ξ

(
−2

(r2)
′′

r2
+

(r2)
′2

2r4
− (r2)

′
f ′

r2f
− f ′′

f
+
f ′

2

2f2

)
. (14)

This equation can be solved iteratively when the metric functions f(ρ) and r2(ρ) is

slowly varying, that is,

εWKB = L?/L� 1, (15)

where

L?(ρ) =
r(ρ)√

2ξ +m2r2(ρ)
, (16)

and L is a characteristic scale of variation of f(ρ) and r2(ρ):

1

L(ρ)
= max

{∣∣∣∣r′r
∣∣∣∣ , ∣∣∣∣f ′f

∣∣∣∣ , ∣∣∣∣r′r√|ξ|
∣∣∣∣ , ∣∣∣∣f ′f √|ξ|

∣∣∣∣ , ∣∣∣∣r′′r
∣∣∣∣1/2 , ∣∣∣∣f ′′f

∣∣∣∣1/2 , . . .
}
.(17)

We shall call the region of spacetime where the metric functions f(ρ) and r2(ρ) is

slowly varying the long throat. This type region exists, for example, in the neigh-

borhood of the ultraextreme horizon.29

The zeroth-order WKB solution of Eq. (14) corresponds to neglecting terms with

derivatives in this equation

W 2 = Ω ·
(

1 +O(εWKB)
)
, (18)

where

Ω (ρ, l + 1/2) =
l(l + 1) +m2r2 + 2ξ

r2
=

1

r(ρ)2

[(
l +

1

2

)2

+ µ2

]
, (19)
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and

µ2 = 2ξ − 1

4
+m2r2. (20)

Below it is assumed that

µ2 > 0. (21)

Let us stress that Ω is the exact solution of Eq. (14 in a spacetime with metric

ds2 = −f0dt2 + dρ2 + r20(dθ2 + sin2 θ dϕ2), where f0, r0 are constants.

Substituting the solution (18) into (13), and neglecting terms of the first order

and higher with respect to εWKB we can obtain

φ(ρ, θ, ϕ; ρ̃, θ, ϕ) =
q

r(ρ)r(ρ̃)

∞∑
l=0

(
l +

1

2

) exp

(
−
ρ+δρ∫
ρ

√
Ω

(
˜̃ρ, l +

1

2

)
d ˜̃ρ

)

4

√
Ω

(
ρ, l +

1

2

)
Ω

(
ρ̃, l +

1

2

) .(22)

The sum over l can be evaluated by using the Plana sum method (see, for example,

paper30)

φ(ρ, θ, ϕ; ρ̃, θ, ϕ) =
q

r(ρ)r(ρ̃)
lim
ε→0


∞∫
ε

exp

(
−
∫ ρ+δρ
ρ

√
Ω(˜̃ρ, x)d ˜̃ρ

)
4
√

Ω(ρ, x)Ω(ρ̃, x)
xdx

+

ε∫
ε−i∞

exp

(
−
∫ ρ+δρ
ρ

√
Ω(˜̃ρ, z)d ˜̃ρ

)
4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + ei2πz)
zdz −

ε+i∞∫
ε

exp

(
−
∫ ρ+δρ
ρ

√
Ω(˜̃ρ, z)d ˜̃ρ

)
4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + e−i2πz)
zdz

 .(23)

The first integral in this expression can be rewritten as follows

q

r(ρ)r(ρ̃)

∞∫
0

exp

(
−
∫ ρ+δρ
ρ

√
Ω(˜̃ρ, x) d ˜̃ρ

)
4
√

Ω(ρ, x)Ω(ρ̃, x)
xdx

=
q√

r(ρ)r(ρ̃)

∞∫
0

x exp

(
−
∫ ρ+δρ
ρ

√
x2 + µ(˜̃ρ)2 d ˜̃ρ/r(˜̃ρ)

)
4
√
x2 + µ(ρ)2 4

√
x2 + µ(ρ̃)2

dx

=
q

r(ρ)

[
1 +O

(
εWKB

δρ

r

)] ∞∫
0

x dx√
x2 + µ(ρ)2

[
1 +O

(
εWKBmr

2δρ
)]

= exp

[
−
√
x2 + µ(ρ)2

r(ρ)
δρ+O

(
εWKB

δρ2

r2

)
+O

(
εWKBm

2δρ2
)]
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=

q exp

[
− δρ

r(ρ)
µ(ρ)

]
δρ

[
1 +O

(
εWKB

δρ2

r2

)
+O

(
εWKBm

2δρ2
) ]

= q

[
1

δρ
− µ(ρ)

r(ρ)

] [
1 +O

(
µ2 δρ

2

r2

)
+O

(
εWKB

δρ2

r2

)
+O

(
εWKBm

2δρ2
) ]

. (24)

The next two integrals in (23) do not diverge at δρ→ 0

lim
ε→0


ε∫

ε−i∞

exp

(
−
∫ ρ+δρ
ρ

√
Ω(˜̃ρ, z)d ˜̃ρ

)
4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + ei2πz)
zdz −

ε+i∞∫
ε

exp

(
−
∫ ρ+δρ
ρ

√
Ω(˜̃ρ, z)d ˜̃ρ

)
4
√

Ω(ρ, z)Ω(ρ̃, z) (1 + e−i2πz)
zdz


= r(ρ) lim

ε→0


iε+∞∫
iε

xdx√
µ2 − x2 (1 + e2πx)

+

−iε+∞∫
−iε

xdx√
µ2 − x2 (1 + e2πx)

+O (δρ)


= 2r(ρ)

∫ µ

0

xdx√
µ2 − x2 (1 + e2πx)

+O

(
δρ

r

)
. (25)

Thus the zeroth-order WKB approximation of φ is

φ(ρ, θ, ϕ; ρ̃, θ, ϕ) =
q

δρ
+

q

r(ρ)

(
−µ(ρ) + 2

∫ µ

0

xdx√
µ2 − x2 (1 + e2πx)

)
. (26)

The procedure of the self-force evaluation requires the renormalization of a scalar

potential φ(x; x̃) which is diverged in the limit x→ x̃ (see, for example, papers31,32).

This renormalization is achieved by subtracting from φ(x; x̃) the DeWittSchwinger

counterterm φDS(x; x̃) and then letting x→ x̃:28,33

φren(x) = lim
x̃→x

[φ(x; x̃)− φDS(x; x̃)] , (27)

where

φDS(xi; x̃i) = q

(
1√
2σ

+
∂gtt(x̃)

∂x̃i
σi

4gtt(x̃)
√

2σ
−m

)
. (28)

In this expression

σ =
gij(x̃)

2
σiσj (29)

is one-half the square of the distance between the points x and x̃ along the shortest

geodesic connecting them and (see, for example, papers34,35)

σi = −
(
xi − x̃i

)
− 1

2
Γijk

(
xj − x̃j

) (
xk − x̃k

)
−1

6

(
ΓijmΓmkl +

∂Γijk
∂x̃l

)(
xj − x̃j

) (
xk − x̃k

) (
xl − x̃l

)
+O

(
(x− x̃)

4
)
, (30)

where Christoffel symbols Γijk are calculated at point x̃.
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The DeWittSchwinger counterterm φDS(x; x̃) in the limit θ = θ̃, ϕ = ϕ̃ can be

easily calculated using the metric (4)

2σ = δρ2 +O
(
δρ4
)
,

φDS(ρ, θ, ϕ; ρ̃, θ, ϕ) == q

(
1

δρ
−m+O

(
1

L

)
+O

(
δρ

L2

))
. (31)

Thus φren(x) is

φren(x) = lim
δρ→0

[φ(ρ, θ, ϕ; ρ̃, θ, ϕ)− φDS(ρ, θ, ϕ; ρ̃, θ, ϕ)]

=
q

r(ρ)

mr(ρ)− µ(ρ) + 2

µ∫
0

xdx

(1 + e2πx)
√
µ(ρ)2 − x2

( 1 +O(εWKB)
)
, (32)

and the single nonzero component of the self-force is

fρ(x) = −q
2

∂φren

∂ρ
=

− q2

2r2
dr

dρ

µ − 2

µ∫
0

xdx

(1 + e2πx)
√
µ2 − x2


+2πq2m2 dr

dρ

µ∫
0

e2πxdx

(1 + e2πx)
2
√
µ2 − x2

( 1 +O(εWKB)
)
. (33)

The functions

F (µ) = µ − 2

µ∫
0

xdx

(1 + e2πx)
√
µ2 − x2

(34)

and

G(µ) =

µ∫
0

e2πxdx

(1 + e2πx)
2
√
µ2 − x2

(35)

can be evaluate numerically. Let us note that if one uses r as the new radial coor-

dinate

ds2 = −f(r)dt2 +

(
dρ

dr

)2

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
, (36)

the expression (33) may be rewritten as follows

fr = fρ
dρ

dr
=

[
− q2

2r2
F (µ) + 2πq2m2G(µ)

](
1 +O(εWKB)

)
. (37)

3. Conclusions

The considered approach gives the possibility to compute the approximate expres-

sion for the self-potential (32) and the self-force 33) on a scalar charge at rest in

the spacetime of long throat (4,15-17). Let us note that the used WKB approxima-

tion is valid for all the modes (including l = 0 mode). This implies also that the
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approximate solution (18) of the equation (14) does not depend on the conditions

at infinity and in considered situation the effect of self-action is a local one even in

the limit of massless field.

We also note that the asymptotic behavior of the function F (µ) for µ� 1 is

Fig. 1. The curve represents the function [µ− F (µ)] 24µ for µ� 1.

This means that the limit of φren at mr →∞ is equal to (see paper28)

φren(x) ≈ q

2m

[
−
gtt,i

;i

12gtt
+

5gtt,igtt
,i

48gtt2
−
(
ξ − 1

6

)
R

]
− q

mr2

(
ξ − 1

6

)
+O

( q

mL2

)
.(38)
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