

JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS

Отдельный оттиск Offprint

> Том 89, № 4 Vol. 89, No. 4

> > ИЮЛЬ-АВГУСТ

JUNE-AUGUST

2016

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ЖУРНАЛ

Основан в январе 1958 г.

2016. ТОМ 89, № 4 (ИЮЛЬ-АВГУСТ)

СОДЕРЖАНИЕ

ТЕПЛОПЕРЕНОС ПРИ ФАЗОВЫХ ПРЕВРАЩЕНИЯХ

Хабеев Н. С. Динамика "двухфазного" пузырька в волнах сжатия	791
Высокоморная О. В., Кузнецов Г. В., Пискунов М. В., Стрижак П. А. Влияние "собственного	
излучения" продуктов сгорания на интенсивность испарения неоднородной капли воды в пламени	795
Китанин Э. Л., Смирнов Ю. А., Лебедев М. Е. Развитие течения и теплообмена при заполнении	
водой трубопровода с начальной температурой стенки ниже точки замерзания	805
Богослов Е. А., Данилаев М. П., Михайлов С. А., Польский Ю. Е. Энергетическая	
эффективность интегральной противообледенительной системы на основе фторопластовых пленок	812
Тонконог В. Г., Баянов И. М., Тонконог М. И., Мубаракшин Б. Р. Технология газификации	
сжиженного природного газа	818

ТЕПЛО- И МАССОПЕРЕНОС В ДИСПЕРСНЫХ И ПОРИСТЫХ СРЕДАХ

Шваб А. В., Евсеев Н. С. Моделирование процесса фракционного разделения частиц	
в пневматическом центробежном аппарате	826
Агафонова Н. Д., Парамонова И. Л. Оценка размера капель в дисперсном потоке	837
Гончарова Г. С., Храмченков М. Г. Математическая модель гидроразрыва пласта	
Чиглинцев И. А., Насыров А. А. Моделирование процесса наполнения купола-сепаратора	
с разложением газогидрата, образовавшегося в период монтажа установки	851
Волков Р. С., Забелин М. В., Кузнецов Г. В., Стрижак П. А. Трансформация водяного	
снаряда при свободном падении в условиях воздействия ортогонального направлению	
его движения потока воздуха	
Безродный М. К., Рачинский А. Ю., Барабаш П. А., Голияд Н. Н. Параметрические границы	
эффективного использования центробежной водяной форсунки в контактных утилизаторах теплоты	
отходящих газов	
Васильев Л. Л., Канончик Л. Е., Цитович А. П. Комплексное исследование сорбционного	
аккумулятора газообразного топлива с терморегулированием	
Ольшанский А. И. Исследование сушки тонких материалов с использованием обобщенных	
комплексных переменных	

ГИДРОГАЗОДИНАМИКА В ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ

Моренко И. В., Снигерев Б. А. Неизотермическое обтекание кругового цилиндра	
с проницаемым слоем при умеренных числах Рейнольдса	
Борзенко Е. И., Шрагер Г. Р. Течение неньютоновской жидкости со свободной поверхностью	901
Борзенко Е. И., Фролов О. Ю., Шрагер Г. Р. Влияние вязкой диссипации на деформацию	
и ориентацию элементов жидкости при заполнении трубы	910
Прокудина Л. А. Нелинейное развитие неустойчивости Марангони в жидких пленках	
Asghar S., Abbas Z., Mushtaq M., and Hayat T. Flow and Heat Transfer Analysis	
in a Deformable Channel	927
Пикулев А. А., Турутин С. Л., Соснин Э. А. Расчетное исследование влияния	
гравитационной конвекции на параметры газовой смеси XeCl-эксилампы барьерного разряда	940
Devi T. T. and Kumar B. Optimal Impeller Clearance for a Dual Stirred Unbaffled Tank	
with a Concave Blade Impeller	948

ПРОЦЕССЫ ПЕРЕНОСА В РЕОЛОГИЧЕСКИХ СРЕДАХ

Абайдуллин Б. Р., Вачагина Е. К., Кадыйров А. И. Сравнение реологических моделей	
Кутателадзе-Хабахпашевой и Оствальда-де Виля при описании обобщенных ньютоновских	
жидкостей с использованием экспериментальных измерений	954

ТЕПЛОПРОВОДНОСТЬ И ТЕПЛООБМЕН В ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ

Шевелев В. В. Стохастическая модель теплопроводности со стохастическими	
граничными условиями	962
Формалев В. Ф., Колесник С. А. Аналитическое исследование теплопереноса	
в анизотропной полосе при задании тепловых потоков на границах	973
Кот В. А. Граничные характеристики для обобщенного уравнения теплопроводности	
и их эквивалентные представления	
Дилигенская А. Н., Рапопорт Э. Я. Метод минимаксной оптимизации в коэффициентной	
обратной задаче теплопроводности	1007
Янковский А. П. Уточнение верхней и нижней границ эффективных коэффициентов	
теплопроводности ребристо-армированных композитных сред	1013

НАНОСТРУКТУРЫ

Дубкова В. И., Корженевский А. П., Крутько Н. П., Комаревич В. Г., Кульбицкая Л. В.	
Наноалмазы детонационного синтеза в композициях сверхвысокомолекулярного полиэтилена	1024
Шабанова Т. А., Приходько Н. Г., Ауелханкызы М., Мансуров З. А. Фуллериты и	
"структуры роста" нанообъектов	1034

ОБЩИЕ ВОПРОСЫ ТЕОРИИ ПЕРЕНОСА

Кравчук А. С., Кравчук А. И., Попова Т. С. Уравнение диффузии композиционной смеси	
в композиционную среду1	041

ОБЗОРЫ

Фомин Н. А. Как появился термин "ударные вол	ы"1047
--	--------

ПОПРАВКА

Ответственный за выпуск: Л. Н. Шемет

Подписано в печать 01.07.2016. Формат 60×84¹%. Бумага офсетная. Усл. печ. л. 32,55. Уч.-изд. л. 27,31. Тираж 102 экз. Заказ 138.

Отпечатано в Республиканском унитарном предприятии «Издательский дом «Беларуская навука». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий №1/18 от 02.08.2013. ЛП № 02330/455 от 30.12.2013.

220141, г. Минск, ул. Ф. Скорины, 40

© Институт тепло- и массообмена им. А. В. Лыкова Национальной академии наук Беларуси

2016 г.

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ЖУРНАЛ ИЮЛЬ–АВГУСТ

Г. С. Гончарова, М. Г. Храмченков

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГИДРОРАЗРЫВА ПЛАСТА

Исследована задача о процессе формирования зоны повышенной проницаемости с подвижной границей в изначально низкопроницаемой пористой среде (задача о гидроразрыве пласта) в трехмерной постановке. Особенность трехмерной модели заключалась в учете существования двух зон (зоны с обычной проницаемостью и зоны разрушения) в пористой среде, область контакта которых определялась с помощью условия баланса массы на подвижной границе. Выявлены и проанализированы особенности, существенные для процесса массопереноса в таких фильтрационно неоднородных пористых средах.

Ключевые слова: проницаемость, пласт, фильтрационная неоднородность, гидроразрыв.

Введение. Удорожание использования ресурсов нефти, значительное ухудшение географических, природно-климатических и горно-геологических условий вновь вовлекаемых в разработку нефтяных месторождений предопределяют тенденцию роста себестоимости добычи нефти. В перспективе влияние вышеуказанных факторов на состояние нефтегазодобывающей отрасли при намечающейся стабилизации или даже сокращении объемов добычи нефти усилится. Определяющим фактором снижения эффективности разработки нефтяных месторождений в настоящее время наряду с известной диспропорцией между подготовкой запасов и вовлечением их в разработку явилось существенное ухудшение структуры запасов, увеличение в них доли малоэффективной трудноизвлекаемой нефти. Последнее обстоятельство обусловлено как вступлением большого числа высокопродуктивных залежей и месторождений в позднюю стадию разработки, так и неблагоприятными качественными характеристиками запасов нефти вводимых в разработку месторождений.

Проблема освоения таких запасов является крайне актуальной для старых нефтедобывающих регионов (в частности, Волго-Уральской нефтегазоносной провинции). Промышленный потенциал этих регионов является, как правило, высоким, с развитой инфраструктурой, включающей энергосети, транспортные магистрали, в том числе нефтепроводы, с наличием научного и высококвалифицированного производственного персонала, а также перерабатывающей промышленности. Таким образом, возникает задача сохранения и развития экономического потенциала таких регионов, связанная с использованием альтернативных ресурсов. Одним из направлений решения данной проблемы является интенсификация вовлечения в хозяйственный оборот дополнительных альтернативных источников углеводородного сырья, приуроченных к карбонатным отложениям каменноугольной и девонской систем, в которых по различным оценкам содержится от 38 до 60% запасов углеводородов. В пределах Волго-Уральской нефтегазоносной провинции именно с данными коллекторами связаны основные перспективы увеличения уровня добычи нефти, а также прироста ее запасов.

В мировой практике запасы нефти, содержащиеся в слабопроницаемых коллекторах, разрабатываются с помощью технологии гидроразрыва пласта [1]. Эта технология основана на принудительной закачке флюида (обычно воды) и создании настолько высокого давления в некоторой области, которое бы обеспечило развитие трещин и значительное увеличение проницаемости этой области. Обычно подобные зоны повышенной проницаемости создаются в областях, примыкающих к добывающим скважинам, что позволяет резко увеличивать их продуктивность. Простейший подход к решению такой задачи на наш взгляд предполагает моделирование фильтрации в неоднородном пласте, состоящем из двух зон — зоны

Казанский федеральный университет. Россия, 420008, г. Казань, ул. Кремлевская, 18; э-почта: mkhramch@ gmail.com. Поступила 14.04.2015.

с низкими значениями коэффициентов проницаемости и зоны с повышенными значениями, а также подвижной границы между зонами, положение которой находится из условия баланса массы на подвижной границе [2].

Постановка задачи. Рассмотрим фильтрацию в трехмерной области Ω : $\Omega = \{(x, y, z), 0 < x < L, 0 < y < H, 0 < z < W\}$. На рис. 1 представлены процессы фильтрации при закачке воды в пласт и формирования двух зон с отличными друг от друга значениями коэффициента проницаемости. Течение жид-кости в пористой неоднородной среде можно описать с помощью задачи Н. Н. Веригина о фильтрации в неоднородной среде, состоящей из двух зон с постоянными, но отличными друг от друга значениями коэффициента пьезопроводности, и движущейся границей между зонами ξ [3]:

$$\nabla(\chi \nabla w) = \frac{\partial w}{\partial t}, \quad \text{где} \quad \chi = \begin{cases} \chi_1 , & \text{если} \quad z \leq \xi , \\ \chi_2 , & \text{если} \quad z > \xi . \end{cases}$$
(1)

Условие ξ на границе неоднородности глины выглядит следующим образом [2]:

$$V_1 + \frac{d\xi}{dt} = V_2 . (2)$$

Используя закон фильтрации Дарси, уравнение (2) можно переписать как

$$\frac{k_1}{\mu} \left. \frac{\partial w}{\partial \mathbf{n}} \right|_{\xi=0} + \frac{d\xi}{dt} = \frac{k_2}{\mu} \left. \frac{\partial w}{\partial \mathbf{n}} \right|_{\xi=0} . \tag{3}$$

Учитывая коэффициент сжимаемости β^{*}, получим следующее условие на границе двух зон:

$$\frac{d\xi}{dt} = \beta^* \left[\chi_2 \left. \frac{\partial w}{\partial \mathbf{n}} \right|_{\xi=0} - \chi_1 \left. \frac{\partial w}{\partial \mathbf{n}} \right|_{\xi=0} \right], \qquad (4)$$
$$w|_{\xi} = \text{const} .$$

Будем считать, что направление вектора нормали совпадает с направлением оси 0*z*, тогда имеем граничные условия:

$$w(A < x < B, 0, z) = p_1, \quad p_1 >> p_0,$$
(5)

$$w_{(0 < x < A, 0, z)} = w_{(B < x < L, 0, z)} = w_{(x, H, z)} = w_{(0, y, z)} = w_{(L, y, z)} = w_{(x, y, 0)} = w_{(x, y, W)} = p_0 ;$$
(6)

начальные условия:

$$w(t=0) = p_0 , \quad \xi(x, y, 0, t=0) = 0 . \tag{7}$$

Рис. 1. Фильтрация в неоднородной среде

Аппроксимация задачи. Для численного решения поставленной задачи определим равномерную сетку (рис. 1):

$$\omega = \begin{cases} (x, y, z) \\ x = 0 + ih_x, & i = 1, N_x - 1, N_x h_x = L, \\ y = 0 + jh_y, & j = \overline{1, N_y - 1}, N_y h_y = H, \\ z = 0 + kh_y, & k = \overline{1, N_z - 1}, N_z h_z = W. \end{cases}$$

Определим узлы для точек А и В по оси x (с округлением до целого):

$$iA \approx \frac{A}{h_x}$$
, $(iA \neq 1)$; $iB \approx \frac{B}{h_x}$, $(iB \neq N_x - 1)$.

Уравнение (1) после аппроксимации для внутренних узлов можно представить следующим образом:

$$a_{i, j, k} w_{i+1, j, k} + b_{i, j, k} w_{i-1, j, k} + c_{i, j, k} w_{i, j+1, k} + d_{i, j, k} w_{i, j-1, k} + + r_{i, j, k} w_{i, j, k+1} + q_{i, j, k} w_{i, j, k-1} + e_{i, j, k} w_{i, j, k} = f_{i, j, k} ,$$

$$(8)$$

где

$$\begin{aligned} a_{i,j,k} &= \frac{d_{i+\frac{1}{2},j,k}}{h_x^2} , \quad b_{i,j,k} &= \frac{d_{i-\frac{1}{2},j,k}}{h_x^2} , \quad c_{i,j,k} &= \frac{d_{i,j+\frac{1}{2},k}}{h_y^2} , \quad d_{i,j,k} &= \frac{d_{i,j-\frac{1}{2},k}}{h_y^2} , \quad r_{i,j,k} &= \frac{d_{i,j,k+\frac{1}{2}}}{h_z^2} , \\ a_{i,j,k} &= \frac{d_{i+\frac{1}{2},j,k}}{h_x^2} , \quad b_{i,j,k} &= \frac{d_{i-\frac{1}{2},j,k}}{h_x^2} , \quad c_{i,j,k} &= \frac{d_{i,j+\frac{1}{2},k}}{h_y^2} , \quad d_{i,j,k} &= \frac{d_{i,j-\frac{1}{2},k}}{h_y^2} , \\ r_{i,j,k} &= \frac{d_{i,j,k+\frac{1}{2}}}{h_z^2} , \quad q_{i,j,k} &= \frac{d_{i,j,k-\frac{1}{2}}}{h_z^2} , \\ e_{i,j,k} &= -\left(a+b+c+d+r+q+\frac{1}{h_t}\right), \quad e_{i,j,k} &= -\left(a+b+c+d+r+q+\frac{1}{h_t}\right), \\ f_{i,j,k} &= -\frac{w_{i,j,k}^0}{h_t} . \end{aligned}$$

Коэффициенты для разностного оператора удовлетворяют следующим условиям:

$$d_{i\pm\frac{1}{2},j,k} = d_{i,j\pm\frac{1}{2},k} = d_{i,j,k\pm\frac{1}{2}} = \chi, \quad \text{где} \quad \chi = \begin{cases} \chi_1 , & \text{если} \quad k \le \xi_k , \\ \chi_2 , & \text{если} \quad k > \xi_k . \end{cases}$$
(9)

C

Определение границы ξ:

1) в начальный момент времени (при *t* = 0) поверхность раздела неоднородности ξ в глине имеет координаты i, j, 1 для $i = 1, N_x - 1, j = 1, N_y - 1;$

2) в последующий момент времени координаты по высоте *k* меняются в соответствии с уравнением (4):

$$z_{\xi} = z_0 + \beta^* h_t \left[\chi_2 \; \frac{w_{i_{\xi}^0, j_{\xi}^0, k_{\xi}^0 + 1} - w_{i_{\xi}^0, j_{\xi}^0, k_{\xi}^0}}{h_z} - \chi_1 \; \frac{w_{i_{\xi}^0, j_{\xi}^0, k_{\xi}^0} - w_{i_{\xi}^0, j_{\xi}^0, k_{\xi}^0 - 1}}{h_z} \right]. \tag{10}$$

Здесь i^0 , j^0 , k^0 — координаты пространства, где $w|_{\xi} = \alpha$. Система уравнений (8)–(10) решалась с по-мощью библиотеки C++ amgcl для решения систем линейных алгебраических уравнений большой размерности [4].

Анализ полученных результатов. Для исследования распределения давления в модели набухания рассмотрим куб с размерной сеткой $nx \times ny \times nz - 60 \times 70 \times 50$. Будем полагать, что в начальный момент времени внутри куба давление P_0 составляло 40 атм, а на границе на 1/3 площади со стороны плоскости xy на куб стало поступать давление 300 атм. На рис. 2 представлено распределение давления в кубе в начальный момент времени.

Рис. 3. Срез (по оси x) давлений исследуемого объема и граница раздела двух зон на первом (a), втором (δ) и шестом (e) временных шагах

Рис. 4. Зависимость максимального значения положения границы раздела двух зон от номера временного шага

В процессе закачки воды за счет повышения давления в зоне повышенной проницаемости происходит перераспределение давления и образуется "зона набухания" с другим значением коэффициента проницаемости. Будем полагать, что в неразрушенной зоне коэффициент пьезопроводности составляет $\chi_2 \approx 10^{-4} \text{ m}^2/\text{c}$; в зоне набухания коэффициент пьезопроводности в 10 раз больше — $\chi_1 \approx 10^{-3} \text{ m}^2/\text{c}$; давление, при котором про-исходит процесс закачки, составляет 104 атм ($\alpha = 104$).

Рассмотрим процесс в разные моменты времени. На рис. 3 представлены срезы давлений исследуемого объема и границы раздела двух зон для временных шагов 1, 2 и 6. После шестого временного шага процесс становится стационарным и граница раздела двух зон больше не поднимается. Были проведены расчеты, когда давление, при котором происходит процесс гидроразрыва, составляет 52 атм ($\alpha = 52$). На рис. 4 представ-

лена зависимость максимального значения положения границы раздела двух зон от номера временного шага. Из рисунка видно, что если отслеживать границу раздела двух зон в каждый момент времени при 52 атм (20% от разницы между давлением внутри куба (40 атм) и поступающим давлением (300 атм)), граница растет по оси *z* больше (выше), нежели когда отслеживается граница раздела двух зон при 104 атм (40% от разницы между давлением внутри куба (40 атм) и поступающим давлении (300 атм)).

Заключение. Разработанная модель гидроразрыва пласта позволяет отслеживать временную динамику формирования зоны повышенной проницаемости и управлять развитием процесса гидроразрыва в нужном практикам направлении. Проведенные расчеты показывают высокую чувствительность скорости развития процесса к приложенному перепаду давления в ходе процесса гидроразрыва.

Работа выполнена при поддержке Российского научного фонда (грант № 15-11-10015).

Обозначения

 $a_{i,j,k}, b_{i,j,k}, c_{i,j,k}, d_{i,j,k}, r_{i,j,k}, q_{i,j,k}$ — коэффициенты для разностного оператора; h_x, h_y, h_z — шаги сетки по осям x, y, z соответственно; i, j, k — узлы по осям x, y, z (с округлением до целого); k_1 — коэффициент проницаемости пласта в низкопроницаемой зоне, M^2 ; k_2 — коэффициент проницаемости в зоне с повышенной проницаемостью, M^2 ; L, H, W — размеры расчетной области по x, y, z соответственно; N_x, N_y, N_z — числа узлов по осям x, y, z соответственно; n — нормаль к границе раздела низкопроницаемой и высокопроницаемой зон; t — время; V_1 и V_2 — скорости фильтрации в низкопроницаемой зоне и в зоне с повышенной проницаемостью соответственно; w — давление, Па; x, y, z — координаты; β^* — коэффициент сжимаемости, Πa^{-1} ; ξ — граница между зонами, м; χ_1, χ_2 — коэффициенты пьезопроводности в зоне повышенной проницаемости (зоне набухания) и зоне с обычной проницаемостью соответственно ($\chi_1 >> \chi_2$); μ — коэффициент динамической вязкости, $\Pi a \cdot$ сут. Индексы: i, j, k — для обозначения узлов по осям x, y, z соответственно.

Литература

1. Charlez Ph. A. Rock Mechanics. Paris: Editions Technip, 1991.

2. Седов Л. И. Механика сплошной среды. Т. 1. Москва: Наука, 1973.

3. Khramchenkov M. G. Mathematical modeling of rheological properties of clays and clay rocks. J. Eng. Phys. Thermophys. 2003. Vol. 76, No. 3. Pp. 659–666.

4. Демидов Д. Е. Библиотека C++ для решения больших разреженных линейных систем многосеточными алгебраическими методами: https://github.com/ddemidov/amgcl.